Arias, P. A., and Coauthors, 2023: Vulnerability and high temperatures exacerbate impacts of ongoing drought in Central South America. World Weather Attribution (WWA). [Available online from https://www.worldweatherattribution.org/wp-content/uploads/WWA-Argentina-Uruguay-drought-Scientific-Report.pdf].
Arias, P. A., and Coauthors, 2024: Interplay between climate change and climate variability: The 2022 drought in Central South America. Climatic Change, 177, 6, https://doi.org/10.1007/s10584-023-03664-4.
Barnes, C., and Coauthors, 2023: Limited net role for climate change in heavy spring rainfall in Emilia-Romagna. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/104550/14/Scientific_Report_Italy_Floods.pdf].
Boers, N., N. Marwan, H. M. J. Barbosa, and J. Kurths, 2017: A deforestation-induced tipping point for the South American monsoon system. Scientific Reports, 7, 41489, https://doi.org/10.1038/srep41489.
Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annual Review of Fluid Mechanics, 37, 99−128, https://doi.org/10.1146/annurev.fluid.37.061903.175702.
Chen, S. Y., and Coauthors, 2023: Mongolia contributed more than 42% of the dust concentrations in Northern China in March and April 2023. Adv. Atmos. Sci., 40, 1549−1557, https://doi.org/10.1007/s00376-023-3062-1.
Cheng, L. J., and Coauthors, 2024: New record ocean temperatures and related climate indicators in 2023. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-3378-5.
China Meteorological Administration (CMA), 2024a: Ten Weather and Climate Events over China in 2023. [Available online from https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202401/t20240119_6016036.html]. (in Chinese)
China Meteorological Administration (CMA), 2024b: Top 10 International Weather and Climate Events in 2023. [Available online from https://www.cma.gov.cn/en/news/NewsEvents/news/202401/t20240122_6019177.html].
China Meteorological Administration (CMA), 2024c: Top 10 Weather and Climate Events in China in 2023. [Available online from https://www.cma.gov.cn/en/news/NewsEvents/news/202401/t20240122_6019089.html].
Clarke, B., and Coauthors, 2024: Climate change, not El Niño, main driver of extreme drought in highly vulnerable Amazon River Basin. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/handle/10044/1/108761].
Cohen, J. L., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007.
De Freitas, A. A., M. S. Reboita, V. S. B. Carvalho, A. Drumond, S. E. T. Ferraz, B. C. da Silva, and R. P. da Rocha, 2023: Atmospheric and oceanic patterns associated with extreme drought events over the Paraná hydrographic region, Brazil. Climate, 11 (1), 12, https://doi.org/10.3390/cli11010012.
DeFlorio, M. J., and Coauthors, 2024: From California’s extreme drought to major flooding: Evaluating and synthesizing experimental seasonal and subseasonal forecasts of landfalling atmospheric rivers and extreme precipitation during winter 2022/23. Bull. Amer. Meteor. Soc., 105, E84−E104, https://doi.org/10.1175/BAMS-D-22-0208.1.
Department of Emergency Management of Yunnan Province (DEMYP), 2024: Natural disasters in Yunnan Province in 2023. [Available online from http://yjglt.yn.gov.cn/html/2024/tjfx_0108/28018.html]. (in Chinese)
Diffenbaugh, N. S., D. L. Swain, and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 112, 3931−3936, https://doi.org/10.1073/pnas.1422385112.
Domeisen, D. I. V., and Coauthors, 2023: Prediction and projection of heatwaves. Nature Reviews Earth & Environment, 4, 36−50, https://doi.org/10.1038/s43017-022-00371-z.
du Bray, M. V., R. Stotts, R. Southee, and A. Wutich, 2023: Beyond extreme: Heat emergency and water insecurity for people experiencing houselessness in Phoenix, Arizona, USA during and after the heatwave of 2023. Human Ecology, 51, 799−808, https://doi.org/10.1007/s10745-023-00447-4.
Emanuel, K., 2005: Genesis and maintenance of "Mediterranean hurricanes". Advances in Geosciences, 2, 217−220, https://doi.org/10.5194/adgeo-2-217-2005.
Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proceedings of the National Academy of Sciences of the United States of America, 114 , 12 681−12 684, https://doi.org/10.1073/pnas.1716222114.
Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 1206−1226, https://doi.org/10.1175/JCLI-D-14-00313.1.
Filonchyk, M., M. P. Peterson, L. F. Zhang, and H. W. Yan, 2024: An analysis of air pollution associated with the 2023 sand and dust storms over China: Aerosol properties and PM10 variability. Geoscience Frontiers, 15, 101762, https://doi.org/10.1016/j.gsf.2023.101762.
Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068.
Fita, L., and E. Flaounas, 2018: Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Quart. J. Roy. Meteor. Soc., 144, 1028−1044, https://doi.org/10.1002/qj.3273.
Founda, D., K. V. Varotsos, F. Pierros, and C. Giannakopoulos, 2019: Observed and projected shifts in hot extremes' season in the Eastern Mediterranean. Global and Planetary Change, 175, 190−200, https://doi.org/10.1016/j.gloplacha.2019.02.012.
Francis, J. A., S. J. Vavrus, and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. WIREs Climate Change, 8, e474, https://doi.org/10.1002/wcc.474.
Freund, M. B., A. G. Marshall, M. C. Wheeler, and J. N. Brown, 2021: Central Pacific El Niño as a precursor to summer drought-breaking rainfall over southeastern Australia. Geophys. Res. Lett., 48, e2020GL091131, https://doi.org/10.1029/2020GL091131.
Fu, J. L., and Coauthors, 2023: Preliminary study on the refined characteristics of rainfall intensity and dynamic and thermodynamic conditions in the July 2023 severe torrential rain in North China. Meteorological Monthly, 49, 1435−1450, https://doi.org/10.7519/j.issn.1000-0526.2023.112701.
Funk, C., A. H. Fink, L. Harrison, Z. Segele, H. S. Endris, G. Galu, D. Korecha, and S. Nicholson, 2023: Frequent but predictable droughts in East Africa driven by a Walker circulation intensification. Earth's Future, 11, e2022EF003454, https://doi.org/10.1029/2022EF003454.
Gao, S. Z., Z. Y. Meng, F. Q. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 1881−1897, https://doi.org/10.1175/2008MWR2669.1.
Geirinhas, J. L., A. C. Russo, R. Libonati, D. G. Miralles, A. M. Ramos, L. Gimeno, and R. M. Trigo, 2023: Combined large-scale tropical and subtropical forcing on the severe 2019−2022 drought in South America. npj Climate and Atmospheric Science, 6 , 185, https://doi.org/10.1038/s41612-023-00510-3.
Gilbert, E., and C. Holmes, 2024: 2023’s Antarctic sea ice extent is the lowest on record. Weather, 79, 46−51, https://doi.org/10.1002/wea.4518.
Government of the State of São Paulo (SP), 2023: Bulletin: Situation and support actions on the North Coast (2/24 – 1pm). Availableonline from https://www.saopaulo.sp.gov.br/spnoticias/boletim-situacao-e-acoes-de-apoio-no-litoral-norte-24-2-13h-2/.
Greco, C., and C. Balmer, 2023: Nine dead in northern Italy floods, Formula One race called off. Available online from https://www.reuters.com/world/europe/two-dead-thousands-evacuated-floods-hit-northern-italy-2023-05-17/.
Guzman, O., and H. Y. Jiang, 2021: Global increase in tropical cyclone rain rate. Nature Communications, 12, 5344, https://doi.org/10.1038/s41467-021-25685-2.
Han, J., H. Dai, and Z. L. Gu, 2021: Sandstorms and desertification in Mongolia, an example of future climate events: A review. Environmental Chemistry Letters, 19, 4063−4073, https://doi.org/10.1007/s10311-021-01285-w.
Hanes, C. C., X. L. Wang, P. Jain, M.-A. Parisien, J. M. Little, and M. D. Flannigan, 2019: Fire-regime changes in Canada over the last half century. Canadian Journal of Forest Research, 49, 256−269, https://doi.org/10.1139/cjfr-2018-0293.
Harrington, L. J., and Coauthors, 2023: The role of climate change in extreme rainfall associated with Cyclone Gabrielle over Aotearoa New Zealand’s East Coast. World Weather Attribution (WWA). [Available online from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/15945/Scientific%20report%20New%20Zealand%20Floods.pdf?sequence=7&isAllowed=y].
He, Y., X. Q. Zhu, Z. Sheng, and M. Y. He, 2023: Resonant waves play an important role in the increasing heat waves in Northern Hemisphere mid-latitudes under global warming. Geophys. Res. Lett., 50, e2023GL104839, https://doi.org/10.1029/2023GL104839.
Holmes CR, Bracegirdle TJ, Holland PR. 2022. Antarctic sea ice projections constrained by historical ice cover and future global temperature change. Geophys. Res. Lett. 49: e2021GL097413. https://doi.org/10.1029/2021GL097413.
Hong Kong Observatory (HKO), 2023: Typhoons and rainstorms affecting Hong Kong in September and October 2023. [Available online from https://www.weather.gov.hk/en/education/friends_hko/e-newsletter/vol91/rainstorm_tc_2023.html]
Huang, X., J. C. L. Chan, R. F. Zhan, Z. F. Yu, and R. J. Wan, 2023: Record-breaking rainfall accumulations in eastern China produced by Typhoon In-fa (2021). Atmospheric Science Letters, 24 (6), e1153, doi: 10.1002/asl.1153
Institute of Arid Meteorology, CMA, Lanzhou, 2023: Information of Arid Meteorology. [Available online from http://61.178.78.36:5008/attachment/file/20231013/1697179401692209.pdf]. (in Chinese)
European Commission, Joint Research Centre, Naumann, G., Podestá, G., Marengo, J. et al., 2023: Extreme and long-term drought in the La Plata Basin – Event evolution and impact assessment until September 2022 – A joint report from EC-JRC, CEMADEN, SISSA and WMO, Publications Office of the European Union, [Available online from https://data.europa.eu/doi/10.2760/62557].
Juliano, T. W., F. Szasdi-Bardales, N. P. Lareau, K. Shamsaei, B. Kosović, N. Elhami-Khorasani, E. P. James, and H. Ebrahimian, 2024: Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires. Nature Hazards and Earth System Sciences, 24, 47−52, https://doi.org/10.5194/nhess-24-47-2024.
Kew, S., and Coauthors, 2023: Strong influence of climate change in uncharacteristic early spring heat in South America. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/106753/7/Scientific%20report%20South%20America%20heat%20Sep%202023%20-%20corrected.pdf].
Kimutai, J., and Coauthors, 2023a: Compounding natural hazards and high vulnerability led to severe impacts from Horn of Africa flooding exacerbated by climate change and Indian Ocean Dipole. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/108015/6/Scientific%20report_%20East%20Africa%20OND%20floods%20.pdf].
Kimutai, J., and Coauthors, 2023b: Human-induced climate change increased drought severity in Horn of Africa. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/103482/16/Scientific%20report-East_Africa_Drought_Final.pdf].
Kimutai, J., and Coauthors, 2023c: Limited data prevent assessment of role of climate change in deadly floods affecting highly vulnerable communities around Lake Kivu. World Weather Attribution (WWA). Available online from https://spiral.imperial.ac.uk/handle/10044/1/105152.
Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303−E322, https://doi.org/10.1175/BAMS-D-18-0194.1.
Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environmental Research Letters, 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.
Kornhuber, K., D. Coumou, E. Vogel, C. Lesk, J. F. Donges, J. Lehmann, and R. M. Horton, 2020: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nature Climate Change, 10, 48−53, https://doi.org/10.1038/s41558-019-0637-z.
Koseki, S., P. A. Mooney, W. Cabos, M. Á. Gaertner, A. De La Vara, and J. J. González-Alemán, 2021: Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate. Natural Hazards and Earth System Sciences, 21, 53−71, https://doi.org/10.5194/nhess-21-53-2021.
Laos Climate Services for Agriculture (LaCSA), 2023: Available online from https://www.lacsa.net/mapView.do.
Lemus-Canovas, M., D. Insua-Costa, R. M. Trigo, and D. G. Miralles, 2024: Record-shattering 2023 spring heatwave in western Mediterranean amplified by long-term drought. npj Climate and Atmospheric Science, 7, 25, https://doi.org/10.1038/s41612-024-00569-6.
Li, F., P. A. Newman, and D. W. Waugh, 2023a: Impacts of stratospheric ozone recovery on southern ocean temperature and heat budget. Geophys. Res. Lett., 50, e2023GL103951, https://doi.org/10.1029/2023GL103951.
Li, K.-X., F. Zheng, J. Zhu, and Q.-C. Zeng, 2024: El Niño and the AMO sparked the astonishingly large margin of warming in the global mean surface temperature in 2023. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-023-3371-4.
Li, K. X., F. Zheng, L. J. Cheng, T. Y. Zhang, and J. Zhu, 2023b: Record-breaking global temperature and crises with strong El Niño in 2023−2024. The Innovation Geoscience, 1 (2), 100030, https://doi.org/10.59717/j.xinn-geo.2023.100030.
Liu, H. Y., M. Satoh, J. F. Gu, L. L. Lei, J. P. Tang, Z. M. Tan, Y. Q. Wang, and J. Xu, 2023a: Predictability of the most long-lived tropical cyclone Freddy (2023) during its westward journey through the southern tropical Indian Ocean. Geophys. Res. Lett., 50, e2023GL105729, https://doi.org/10.1029/2023GL105729.
Liu, J. P., Z. Zhu, and D. K. Chen, 2023b: Lowest Antarctic sea ice record broken for the second year in a row. Ocean-Land-Atmosphere Research, 2, 0007, https://doi.org/10.34133/olar.0007.
Liu, M. F., G. A. Vecchi, J. A. Smith, and T. R. Knutson, 2019: Causes of large projected increases in hurricane precipitation rates with global warming. npj Climate and Atmospheric Science, 2, 38, https://doi.org/10.1038/s41612-019-0095-3.
Liu, N. J., A. Q. Feng, P. Zhang, M. Mei, G. F. Wang, and Y. X. Zhang, 2023c: Spatial-temporal patterns of the winter 2022-spring 2023 drought in southwest China and recommendations for drought disaster risk reduction. China Flood & Drought Management, 33 (7), 16−20, https://doi.org/10.16867/j.issn.1673-9264.2023248. (in Chinese with English abstract
Liu, Y. Y., Z.-Z. Hu, R. G. Wu, and X. Yuan, 2022: Causes and predictability of the 2021 spring southwestern China severe drought. Adv. Atmos. Sci., 39 (10), 1766−1776, https://doi.org/10.1007/s00376-022-1428-4.
Ma, S. M., T. J. Zhou, O. Angélil, and H. Shiogama, 2017: Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming. J. Climate, 30, 6543−6560, https://doi.org/10.1175/JCLI-D-16-0636.1.
Marris, E. 2023: Hawaii wildfires: did scientists expect Maui to burn?. Nature, 620, 708−709, https://doi.org/10.1038/d41586-023-02571-z.
Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Science Advances, 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.
Marengo, J. A., and J. C. Espinoza, 2016: Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. International Journal of Climatology, 36, 1033−1050, https://doi.org/10.1002/joc.4420.
Miralles, D. G., M. J. van den Berg, A. J. Teuling, and R. A. M. de Jeu, 2012: Soil moisture-temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012GL053703.
Mongolian National Agency Meteorology and the Environmental Monitoring (MNAMEM), 2024: [Available online from https://www.namem.gov.mn/view/3904].
Munkhjargal, E., M. Shinoda, Y. Iijima, and B. Nandintseteseg, 2020: Recently increased cold air outbreaks over Mongolia and their specific synoptic pattern. International Journal of Climatology, 40, 5502−5514, https://doi.org/10.1002/joc.6531.
NASA Scientific Visualization Studio, 2023: NASA Tracks Freddy, Longest-lived Tropical Cyclone on Record. [Available online from https://svs.gsfc.nasa.gov/14312].
National Disaster Management Authority (NDMA) of Australia, 2023: Were you impacted by the 2022−23 Western Australia floods following ex-Tropical Cyclone Ellie?. [Available online from https://nema.gov.au/get-support/western-australia-floods-december-2022].
National Disaster Management Authority (NDMA) of Pakistan, 2023: Moosoon Rains. [Available online from http://www.ndma.gov.pk/advisories?page=12].
National Institute of Water and Atmospheric Research Limited (NIWA): Annual Climate Summary, 2023: [Available online from https://niwa.co.nz/climate/summaries/annual-climate-summary-2023].
National Oceanic and Atmospheric Administration (NOAA), 2023a: Assessing the Global Climate in September 2023. NOAA. [Available online from https://www.ncei.noaa.gov/news/global-climate-202309].
National Oceanic and Atmospheric Administration (NOAA), 2023b: Assessing the U.S. Climate in 2023. [Available online from https://www.ncei.noaa.gov/news/national-climate-202312].
National Oceanic and Atmospheric Administration (NOAA), 2024a: 2023 was the world’s warmest year on record, by far. [Available online from https://www.noaa.gov/news/2023-was-worlds-warmest-year-on-record-by-far].
National Oceanic and Atmospheric Administration (NOAA), 2024b: Assessing the Global Climate in 2023. [Available online from https://www.ncei.noaa.gov/news/global-climate-202312].
Newman, R., and I. Noy, 2023: The global costs of extreme weather that are attributable to climate change. Nature Communications, 14, 6103, https://doi.org/10.1038/s41467-023-41888-1.
Oduoye, M. O., and Coauthors, 2024: Flooding in Libya amid an economic crisis: What went wrong?. International Journal of Surgery: Global Health, 7, e0401, https://doi.org/10.1097/GH9.0000000000000401.
Paddison, L., 2023: Extreme heat scorches large parts of South America as winter ends. Cable News Network (CNN). [Available online from https://edition.cnn.com/2023/09/25/americas/extreme-heat-south-america-brazil-climate-intl/index.html].
Pakistan Meteorological Department (PMD), 2023: State of Pakistan in Climate of 2023. [Available online from https://cdpc.pmd.gov.pk/Pakistan_Climate_2023.pdf].
Pastor, F., J. A. Valiente, and S. Khodayar, 2020: A warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sensing, 12 (17), 2687, https://doi.org/10.3390/rs12172687.
Philip, S., and Coauthors, 2023: Extreme April heat in Spain, Portugal, Morocco & Algeria almost impossible without climate change. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/103833/9/Scientific%20Report%20West%20Mediterranean%20Heat.pdf].
Piao, J., W. Chen, K. Wei, Q. Y. Cai, X. W. Zhu, and Z. C. Du, 2023: Increased sandstorm frequency in North China in 2023: Climate change reflection on the Mongolian plateau. The Innovation, 4, 100497, https://doi.org/10.1016/j.xinn.2023.100497.
Pinto, I., and Coauthors, 2023: Extreme poverty rendering Madagascar highly vulnerable to underreported extreme heat that would not have occurred without human-induced climate change. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/107732/14/Scientific%20report_%20Madagascar%20heatwave.pdf].
Purich, A., and E. W. Doddridge, 2023: Record low Antarctic sea ice coverage indicates a new sea ice state. Communications Earth & Environment, 4, 314, https://doi.org/10.1038/s43247-023-00961-9.
Qian, C., and Coauthors, 2024: Rapid attribution of the record-breaking heatwave event in North China in June 2023 and future risks. Environmental Research Letters, 19, 014028, https://doi.org/10.1088/1748-9326/ad0dd9.
Qing, Y., S. Wang, Z. L. Yang, and P. Gentine, 2023: Soil moisture−atmosphere feedbacks have triggered the shifts from drought to pluvial conditions since 1980. Communications Earth & Environment, 4, 254, https://doi.org/10.1038/s43247-023-00922-2.
Richardson, D., A. S. Black, D. Irving, R. J. Matear, D. P. Monselesan, J. S. Risbey, D. T. Squire, and C. R. Tozer, 2022: Global increase in wildfire potential from compound fire weather and drought. npj Climate and Atmospheric Science, 5, 23, https://doi.org/10.1038/s41612-022-00248-4.
Rivera, J. A., and Coauthors, 2023: 2022 early-summer heatwave in Southern South America: 60 times more likely due to climate change. Climatic Change, 176, 102, https://doi.org/10.1007/s10584-023-03576-3.
Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122 (534), 1385−1404, https://doi.org/10.1002/qj.49712253408.
Rogers, C. D. W., K. Kornhuber, S. E. Perkins-Kirkpatrick, P. C. Loikith, and D. Singh, 2022: Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J. Climate, 35, 1063−1078, https://doi.org/10.1175/JCLI-D-21-0200.1.
Romero, R., and K. Emanuel, 2013: Medicane risk in a changing climate. J. Geophys. Res.: Atmos., 118, 5992−6001, https://doi.org/10.1002/jgrd.50475.
Romero, R., and K. Emanuel, 2017: Climate change and hurricane-like extratropical cyclones: Projections for North Atlantic polar lows and medicanes based on CMIP5 models. J. Climate, 30, 279−299, https://doi.org/10.1175/JCLI-D-16-0255.1.
Senande-Rivera, M., D. Insua-Costa, and G. Miguez-Macho, 2022: Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications, 13, 1208, https://doi.org/10.1038/s41467-022-28835-2.
Stansfield, A. M., and K. A. Reed, 2023: Global tropical cyclone precipitation scaling with sea surface temperature. npj Climate and Atmospheric Science, 6, 60, https://doi.org/10.1038/s41612-023-00391-6.
Stevens, B., and Coauthors, 2024: Earth Virtualization Engines (EVE). Earth System Science Data, https://doi.org/10.5194/essd-2023-376.
Swain, D. L., B. Langenbrunner, J. D. Neelin, and A. Hall, 2018: Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8, 427−433, https://doi.org/10.1038/s41558-018-0140-y.
Teng, H. Y., G. Branstator, H. L. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nature Geoscience, 6, 1056−1061, https://doi.org/10.1038/ngeo1988.
Theo Gkousarov (Metdesk), 2023: Weather tracker: Australia officially in grip of El Niño as temperatures soar. The Guardian. [Available online from https://www.theguardian.com/environment/2023/sep/22/weather-tracker-australia-el-nino-temperatures-soar-heatwave].
Third National Communication of Mongolia (TNC), 2018: Available online from unfccc.int/sites/default/files/resource/06593841_Mongolia-NC3-2-Mongolia TNC 2018 pr.pdf.
Toreti, A., and Coauthors, 2023: Drought in South America. Publications Office of the European Union. Luxembourg, https://doi.org/10.2760/873366.
Tous, M., and R. Romero, 2013: Meteorological environments associated with medicane development. International Journal of Climatology, 33, 1−14, https://doi.org/10.1002/joc.3428.
Tous, M., G. Zappa, R. Romero, L. Shaffrey, and P. L. Vidale, 2016: Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model. Climate Dyn., 47, 1913−1924, https://doi.org/10.1007/s00382-015-2941-2.
Trauernicht, C., E. Pickett, C. P. Giardina, C. M. Litton, S. Cordell, and A. Beavers, 2015: The contemporary scale and context of wildfire in Hawai‘i. Pacific Science, 69, 427−444, https://doi.org/10.2984/69.4.1.
UN Children's Fund (UNICEF), 2024: UNICEF Mongolia Humanitarian Situation Report No. 3 (Dzud). [Available online from https://reliefweb.int/report/mongolia/unicef-mongolia-humanitarian-situation-report-no-3-dzud-22-march-2024].
United Nations (UN), 2023: Unprecedented drought emergency demands urgent action. [Available online from https://news.un.org/en/story/2023/12/1144247].
United Nations Environment Programme (UNEP), 2022: Spreading like wildfire: The rising threat of extraordinary landscape fires. [Available online from https://wedocs.unep.org/bitstream/handle/20.500.11822/38372/wildfire_RRA.pdf].
United Nations Office for the Coordination of Humanitarian Affairs (OCHA), 2023: Mozambique: Severe Tropical Storm Freddy - Flash Update No. 10. [Available online from https://reliefweb.int/report/mozambique/mozambique-severe-tropical-storm-freddy-flash-update-no-10-15-march-2023].
van Oldenborgh, G. J., and Coauthors, 2017: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2.
Walsh, K. J. E., S. J. Camargo, T. R. Knutson, J. Kossin, T.-C. Lee, H. Murakami, and C. Patricola, 2019: Tropical cyclones and climate change. Tropical Cyclone Research and Review, 8, 240−250, https://doi.org/10.1016/j.tcrr.2020.01.004.
Wang, J., Y. Chen, J. Nie, Z. W. Yan, P. M. Zhai, and J. M. Feng, 2022: On the role of anthropogenic warming and wetting in the July 2021 Henan record-shattering rainfall. Science Bulletin, 67, 2055−2059, https://doi.org/10.1016/j.scib.2022.09.011.
Wang, S. Y. S., J. H. Yoon, E. Becker, and R. Gillies, 2017: California from drought to deluge. Nature Climate Change, 7, 465−468, https://doi.org/10.1038/nclimate3330.
Wang, Y., and Coauthors, 2023b: Analysis of the characteristics and causes of drought in China in the first half of 2023. Journal of Arid Meteorology, 41 (6), 884−896, https://doi.org/10.11755/j.issn.1006-7639(2023)-06-0884. (in Chinese with English abstract
Wang, Z., and Coauthors, 2024: Severe global environmental issues caused by Canada’s record-breaking wildfires in 2023. Adv. Atmos. Sci., 41, 565−571, https://doi.org/10.1007/s00376-023-3241-0.
White, R. H., K. Kornhuber, O., Martius, and V. Wirth, 2022: From atmospheric waves to heatwaves: A waveguide perspective for understanding and predicting concurrent, persistent, and extreme extratropical weather. Bull. Amer. Meteor. Soc., 103, E923−E935, https://doi.org/10.1175/BAMS-D-21-0170.1.
Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012−2014. Geophys. Res. Lett., 42 , 6819−6828, https://doi.org/10.1002/2015GL064924.
World Meteorological Organization (WMO), 2023a: Atlas of Mortality and Economic Losses from Weather, Climate and Water-related Hazards (1970−2021). [Available online from https://wmo.int/publication-series/atlas-of-mortality-and-economic-losses-from-weather-climate-and-water-related-hazards-1970-2021].
World Meteorological Organization (WMO), 2023c: State of the Climate in Africa 2022. [Available online from https://library.wmo.int/records/item/67761-state-of-the-climate-in-africa-2022].
World Meteorological Organization (WMO), 2023d: Significant weather and climate events in 2023. [Available online from https://wmo.int/sites/default/files/2023-12/Supplement.pdf].
World Meteorological Organization (WMO), 2024: State of the Global Climate 2023. [Available online from https://library.wmo.int/records/item/68835-state-of-the-global-climate-2023].
Wu, P. L., R. Clark, K. Furtado, C. Xiao, Q. L. Wang, and R. Z. Sun, 2023a: A case study of the July 2021 Henan extreme rainfall event: From weather forecast to climate risks. Weather and Climate Extremes, 40, 100571, https://doi.org/10.1016/j.wace.2023.100571.
Wu, S. J., M. Luo, X. Y. Wang, E. J. Ge, W. Zhang, X. H. Gu, and J. Y. Liu, 2023b: Season-dependent heatwave mechanisms: A study of southern China. Weather and Climate Extremes, 42, 100603, https://doi.org/10.1016/j.wace.2023.100603.
Xu, C. H., H. L. Li, F. T. Wang, Z. Q. Li, P. Zhou, and S. S. Liu, 2024: Heatwaves in summer 2022 forces substantial mass loss for Urumqi Glacier No. 1, China. J. Glaciol., 1-5, https://doi.org/10.1017/jog.2024.4.
Xu, X. F., 2024: Frequent occurrence of extreme weather and out-of-balance climate systems. The Innovation Geoscience, 2 (1), 100049, https://doi.org/10.59717/j.xinn-geo.2024.100049.
Yang, S. N., F. H. Zhang, Y. Hu, S. Chen, W. Zhao, W. L. Hua, and A. X. Feng, 2023: Analysis on the characteristics and causes of the "23·7" torrential rainfall event in North China. Torrential Rain and Disasters, 42 (5), 508−520, http://doi.org/10.12406/byzh.2023-187. (in Chinese with English abstract
Yin, L., F. Ping, J. H. Mao, and S. G. Jin, 2023a: Analysis on precipitation efficiency of the “21.7” Henan extremely heavy rainfall event. Adv. Atmos. Sci., 40, 374−392, https://doi.org/10.1007/s00376-022-2054-x.
Yin, Z. C., Q. Y. Huo, X. Q. Ma, Y. J. Zhang, X. H. Ma, and H. J. Wang, 2023b: Mechanisms of dust source accumulation and synoptic disturbance triggering the 2023 spring sandstorm in northern China. Transactions of Atmospheric Sciences, 46, 321−331, https://doi.org/10.13878/j.cnki.dqkxxb.20230501007.
You, X. Y., 2023: Surge in extreme forest fires fuels global emissions. Nature, https://doi.org/10.1038/d41586-023-04033-y.
Zachariah, M., S. Philip, I. Pinto, M. Vahlberg, R. Singh, J. R. Arrighi, C. Barnes, and F. E. L. Otto, 2023a: Extreme heat in North America, Europe and China in July 2023 made much more likely by climate change. World Weather Attribution (WWA). [Available online from https://www.forestsociety.org/document/scientific-report-northern-hemisphere-heatpdf.pdf].
Zachariah, M., and Coauthors, 2023b: Extreme humid heat in South and Southeast Asia in April 2023, largely driven by climate change, detrimental to vulnerable and disadvantaged communities. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/104092/18/south%20asia%20heat%20scientific%20report.pdf].
Zachariah, M., and Coauthors, 2023c: Interplay of climate change-exacerbated rainfall, exposure and vulnerability led to widespread impacts in the Mediterranean region. World Weather Attribution (WWA). [Available online from https://spiral.imperial.ac.uk/bitstream/10044/1/106501/14/scientific%20report%20-%20Mediterranean%20floods.pdf].
Zhang, J. T., and Coauthors, 2023: Preliminary study on the characteristics and causes of the "23.7" extreme rainstorm in Hebei. Transactions of Atmospheric Sciences, 46, 884−903, https://doi.org/10.13878/j.cnki.dqkxxb.20230905001.
Zhang, L. P., T. L. Delworth, X. S. Yang, F. R. Zeng, F. Y. Lu, Y. Morioka, and M. Bushuk, 2022: The relative role of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016−2021. Communications Earth & Environment, 3 , 302, https://doi.org/10.1038/s43247-022-00624-1.
Zhang, W. X., K. Furtado, P. L. Wu, T. J. Zhou, R. Chadwick, C. Marzin, J. Rostron, and D. Sexton, 2021: Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances, 7 (31), eabf8021, https://doi.org/10.1126/sciadv.abf8021.
Zheng, F., and Coauthors, 2024: Will the globe encounter the warmest winter after the hottest summer in 2023?. Adv. Atmos. Sci., 41, 581−586, https://doi.org/10.1007/s00376-023-3330-0.
Zhou, Y. Q., T. J. Zhou, J. Jiang, X. L. Chen, B. Wu, S. Hu, and M. N. Wu, 2023: Understanding the forcing mechanisms of the 1931 summer flood along the Yangtze River, the world’s deadliest flood on record. J. Climate, 36, 6577−6596, https://doi.org/10.1175/JCLI-D-22-0771.1.