An, X. Q., B. Yao, Y. Li, N. Li, and L. X. Zhou, 2014: Tracking source area of Shangdianzi station using Lagrangian particle dispersion model of FLEXPART. Meteorological Applications, 21, 466−473, https://doi.org/10.1002/met.1358.
Ashbaugh, L. L., W. C. Malm, and W. Z. Sadeh, 1985: A residence time probability analysis of sulfur concentrations at grand Canyon national park. Atmos. Environ., 19, 1263−1270, https://doi.org/10.1016/0004-6981(85)90256-2.
Baker, J., 2010: A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK. Atmos. Environ., 44, 563−571, https://doi.org/10.1016/j.atmosenv.2009.10.030.
Borge, R., J. Lumbreras, S. Vardoulakis, P. Kassomenos, and E. Rodriguez, 2007: Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmos. Environ., 41, 4434−4450, https://doi.org/10.1016/j.atmosenv.2007.01.053.
Brioude, J., and Coauthors, 2013: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geoscientific Model Development, 6, 1889−1904,
Cabello, M., J. A. G. Orza, and V. Galiano, 2007: Air mass origin and its influence over the aerosol size distribution: a study in SE Spain. Preprints, 7th Annual Meeting of the European-Meteorology-Society (EMS) / 8th European Conference on Applications of Meteorology, San Lorenzo de El Escorial, SPAIN, S. European Meteorol, 47−52,
Chang, X., and Coauthors, 2019: Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Science of the Total Environment, 660, 1191−1200, https://doi.org/10.1016/j.scitotenv.2018.12.474.
Che, J. H., P. Zhao, Q. Shi, and Q. Y. Yang, 2021: Research progress in atmospheric boundary layer. Chinese Journal of Geophysics, 64, 735−751, https://doi.org/10.6038/cjg2021O0057. (in Chinese with English abstract
Chen, H. Y., X. Q. Wang, S. Y. Cheng, P. B. Guan, Z. D. Zhang, W. C. Bai, and G. Q. Tang, 2021a: Analysis of meteorological causes and transmission characteristics of a heavy haze process in Beijing Tianjin Hebei and Yangtze River Delta. China Environmental Science, 41, 2481−2492, https://doi.org/10.3969/j.issn.1000-6923.2021.06.001. (in Chinese with English abstract
Chen, X. S., and Coauthors, 2021b: Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module. Atmospheric Chemistry and Physics, 21, 9343−9366, https://doi.org/10.5194/acp-21-9343-2021.
Chu, B. W., and Coauthors, 2020: Air pollutant correlations in China: Secondary air pollutant responses to NOx and SO2 control. Environmental Science & Technology Letters, 7, 695−700, https://doi.org/10.1021/acs.estlett.0c00403.
Crippa, M., and Coauthors, 2018: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth System Science Data, 10, 1987−2013,
Duncan, B. N., J. A. Logan, I. Bey, I. A. Megretskaia, R. M. Yantosca, P. C. Novelli, N. B. Jones, C. P. Rinsland, 2007: Global budget of CO, 1988-1997: Source estimates and validation with a global model. J. Geophys. Res. Atmos., 112, D22301, https://doi.org/10.1029/2007JD008459.
Ge, B. Z., X. B. Xu, W. L. Lin, J. Li, and Z. F. Wang, 2012: Impact of the regional transport of urban Beijing pollutants on downwind areas in summer: Ozone production efficiency analysis. Tellus B: Chemical and Physical Meteorology, 64, 17348, https://doi.org/10.3402/tellusb.v64i0.17348.
Guo, P., A. B. Umarova, and Y. Q. Luan, 2020: The spatiotemporal characteristics of the air pollutants in China from 2015 to 2019. PLoS One, 15, e0227469,
Hao, J. M., L. T. Wang, L. Li, J. N. Hu, and X. C. Yu, 2005: Air pollutants contribution and control strategies of energy-use related sources in Beijing. Science in China Series D-Earth Sciences, 48, 138−146.
Hua, C., C. Liu, H. D. Zhang, and Q. Jiang, 2017: Characteristics of air pollutant transport over Beijing-Tianjin-Hebei region during winter months and improvement of transport weather index. Meteorological Monthly, 43, 813−822, https://doi.org/10.7519/j.issn.1000-0526.2017.07.005. (in Chinese with English abstract
Karaca, F., and F. Camci, 2010: Distant source contributions to PM10 profile evaluated by SOM based cluster analysis of air mass trajectory sets. Atmos. Environ., 44, 892−899, https://doi.org/10.1016/j.atmosenv.2009.12.006.
Khuzestani, R. B., J. J. Schauer, Y. J. Wei, L. L. Zhang, T. Q. Cai, Y. Zhang, and Y. X. Zhang, 2017: Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China. Environmental Pollution, 229, 1019−1031, https://doi.org/10.1016/j.envpol.2017.07.093.
Li, C., M. S. Hammer, B. Zheng, and R. C. Cohen, 2021a: Accelerated reduction of air pollutants in China, 2017−2020. Science of the Total Environment, 803, 150011,
Li, J., 2020: Pollution trends in China from 2000 to 2017: A multi-sensor view from space. Remote Sensing, 12, 208, https://doi.org/10.3390/rs12020208.
Li, J., H. Y. Du, Z. F. Wang, Y. L. Sun, W. Y. Yang, J. J. Li, X. Tang, and P. Q. Fu, 2017a: Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environmental Pollution, 223, 605−615, https://doi.org/10.1016/j.envpol.2017.01.063.
Li, J., and Coauthors, 2008: Near-ground ozone source attributions and outflow in central eastern China during MTX2006. Atmospheric Chemistry and Physics, 8, 7335−7351,
Li, J., and Coauthors, 2013: Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus B: Chemical and Physical Meteorology, 65, 20052, https://doi.org/10.3402/tellusb.v65i0.20052.
Li, J. W., and Coauthors, 2021b: Variation in PM2.5 sources in central North China Plain during 2017−2019: Response to mitigation strategies. Journal of Environmental Management, 288, 112370, https://doi.org/10.1016/j.jenvman.2021.112370.
Li, J. Y., and Coauthors, 2021c: Effects of different stagnant meteorological conditions on aerosol chemistry and regional transport changes in Beijing, China. Atmos. Environ., 258, 118483, https://doi.org/10.1016/j.atmosenv.2021.118483.
Li, M., and Coauthors, 2017b: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17, 935−963, https://doi.org/10.5194/acp-17-935-2017.
Li, Y., X. Q. An, B. Yao, L. X. Zhou, and H. C. Zuo, 2010: A preliminary study on the applicability of the FLEXPART model to Beijing. Acta Scientiae Circumstantiae, 30, 1674−1681, https://doi.org/10.13671/j.hjkxxb.2010.08.019. (in Chinese with English abstract
Liang, L., Z. W. Han, J. W. Li, J. Li, Y. Gao, and Y. F. Wu, 2020: A comparative numerical study of aerosols during dust and haze events in Beijing springtime. Climatic and Environmental Research, 25, 125−138, https://doi.org/10.3878/j.issn.1006-9585.2019.19125. (in Chinese with English abstract
Liu, H., and Coauthors, 2020: Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmospheric Chemistry and Physics, 20, 5771−5785, https://doi.org/10.5194/acp-20-5771-2020.
Long, P. K., P. D. Hien, and N. H. Quang, 2019: Atmospheric transport of 131I and 137Cs from Fukushima by the East Asian northeast monsoon. Journal of Environmental Radioactivity, 197, 74−80, https://doi.org/10.1016/j.jenvrad.2018.12.003.
Markou, M. T., and P. Kassomenos, 2010: Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmos. Res., 98, 438−457, https://doi.org/10.1016/j.atmosres.2010.08.006.
Pan, X. L., Y. Kanaya, Z. F. Wang, X. Tang, M. Takigawa, P. Pakpong, F. Taketani, and H. Akimoto, 2014: Using Bayesian optimization method and FLEXPART tracer model to evaluate CO emission in East China in springtime. Environmental Science and Pollution Research, 21, 3873−3879, https://doi.org/10.1007/s11356-013-2317-2.
Ren, X., F. Hu, H. L. Hu, Z. X. Hong, Y. C. Tong, and X. J. Cheng, 2004: Effect of sand-dust on the concentration of atmospheric PM10 in Beijing during 2000 to 2002. Research of Environmental Sciences, 17, 51−55,
Rigby, M., and Coauthors, 2019: Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature, 569, 546−550, https://doi.org/10.1038/s41586-019-1193-4.
Sachdeva, S., and S. Baksi, 2016: Air pollutant dispersion models: A review. Proc. of HSFEA 2016 Advances in Health and Environment Safety, Singapore, Springer, 203−207,
Seibert, P., and A. Frank, 2004: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmospheric Chemistry and Physics, 4, 51−63, https://doi.org/10.5194/acp-4-51-2004.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059−2077, https://doi.org/10.1175/BAMS-D-14-00110.1.
Stohl, A., and Coauthors, 2009: An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and Physics, 9, 1597−1620, https://doi.org/10.5194/acp-9-1597-2009.
Stunder, B. J. B., 1996: An assessment of the quality of forecast trajectories. J. Appl. Meteorol. Climatol., 35, 1319−1331, https://doi.org/10.1175/1520-0450(1996)035<1319:AAOTQO>2.0.CO;2.
Su, L., Z. B. Yuan, J. C. H. Fung, and A. K. H. Lau, 2015: A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Science of the Total Environment, 506507, 527−537,
Thakur, J., P. Thever, B. Gharai, M. V. R. S. Sai, and V. Pamaraju, 2019: Enhancement of carbon monoxide concentration in atmosphere due to large scale forest fire of Uttarakhand. PeerJ, 7, e6507, https://doi.org/10.7717/peerj.6507.
Tian, Y., X. L. Pan, T. Nishizawa, H. Kobayashi, I. Uno, X. Q. Wang, A. Shimizu, and Z. F. Wang, 2018: Variability of depolarization of aerosol particles in the megacity of Beijing: Implications for the interaction between anthropogenic pollutants and mineral dust particles. Atmospheric Chemistry and Physics, 18, 18 203−18 217,
Tian, Y., and Coauthors, 2020: Transport patterns, size distributions, and depolarization characteristics of dust particles in East Asia in Spring 2018. J. Geophys. Res. Atmos., 125, e2019JD031752, https://doi.org/10.1029/2019JD031752.
Wang, W., Z. F. Wang, Q. Z. Wu, A. Gbaguidi, W. Zhang, P. Z. Yan, and T. Yang, 2010: Variation of PM10 flux and scenario analysis before and after the olympic opening ceremony in Beijing. Climatic and Environmental Research, 15, 652−661, https://doi.org/10.3878/j.issn.1006-9585.2010.05.15. (in Chinese with English abstract
Wang, X. Q., Y. B. Qi, Z. F. Wang, H. Guo, and T. Yu, 2007: The influence of synoptic pattern on PM10 heavy air pollution in Beijing. Climatic and Environmental Research, 12, 81−86, https://doi.org/10.3969/j.issn.1006-9585.2007.01.009. (in Chinese with English abstract
Wang, Z., I. Uno, K. Yumimoto, S. Itahashi, X. S. Chen, W. Y. Yang, and Z. F. Wang, 2021: Impacts of COVID-19 lockdown, Spring Festival and meteorology on the NO2 variations in early 2020 over China based on in-situ observations, satellite retrievals and model simulations. Atmos. Environ., 244, 117972, https://doi.org/10.1016/j.atmosenv.2020.117972.
Warneke, C., and Coauthors, 2006: Biomass burning and anthropogenic sources of CO over New England in the summer 2004. J. Geophys. Res. Atmos., 111, D23S15, https://doi.org/10.1029/2005JD006878.
Wei, P., S. Y. Cheng, F. Q. Su, Z. H. Ren, and D. S. Chen, 2012: Simulation and analysis of pollutant transport during the heavy polution event in Beijing. Journal of Beijing University of Technology, 38, 1264−1268. (in Chinese with English abstract)
Xiong, H. H., L. W. Liang, Z. Zeng, and Z. B. Wang, 2017: Dynamic analysis of PM2.5 spatial-temporal characteristics in China. Resources Science, 39, 136−146, https://doi.org/10.18402/resci.2017.01.14. (in Chinese with English abstract)
Yang, F., and Coauthors, 2011: Characteristics of PM2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics, 11, 5207−5219, https://doi.org/10.5194/acp-11-5207-2011.
Yang, T., Z. F. Wang, B. Zhang, X. Q. Wang, W. Wang, A. Gbauidi, and Y. B. Gong, 2010: Evaluation of the effect of air pollution control during the Beijing 2008 Olympic Games using Lidar data. Chinese Science Bulletin, 55, 1311−1316, https://doi.org/10.1007/s11434-010-0081-y.
Zhai, S. X., and Coauthors, 2019: Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19, 11 031−11 041,
Zhang, Y., and Coauthors, 2021a: Mixing state of refractory black carbon in fog and haze at rural sites in winter on the North China Plain. Atmospheric Chemistry and Physics, 21, 17 631−17 648,
Zhang, Z. D., X. Q.Wang, H. Y. Zhang, P. B. Guan, C. D. Wang, and G. Q. Tang, 2021b: PM2.5 transport characteristics of typical cities in Beijing-Tianjin-Hebei Region in autumn and winter. China Environmental Science, 41, 993−1004, https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0111. (in Chinese with English abstract
Zhang, Z. G., Q. X. Gao, X. Q. Han, and X. J. Zheng, 2004: The study of pollutant transport between the cities in North China. Research of Environmental Sciences, 17, 14−20, https://doi.org/10.13198/j.res.2004.01.16.zhangzhg.003. (in Chinese with English abstract
Zheng, B., and Coauthors, 2018a: Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13, 044007,
Zheng, B., and Coauthors, 2018b: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18, 14 095−14 111,
Zheng, B. Q. Zhang, G. N. Geng, C. H. Chen, Q. R. Shi, M. S. Cui, Y. Lei, and K. B. He, 2021: Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth System Science Data, 13, 2895−2907,