Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548.
Chao, L. Y., B. Y. Huang, Y. J. Yang, P. Jones, J. Y. Cheng, Y. Yang, and Q. X. Li, 2020: A new evaluation of the role of urbanization to warming at various spatial scales: Evidence from the Guangdong-Hong Kong-Macau Region, China. Geophys. Res. Lett., 47, e2020GL089152, https://doi.org/10.1029/2020GL089152.
Cheng, J. Y., Q. X. Li, L. Y. Chao, S. Maity, B. Y. Huang, and P. Jones, 2020: Development of high resolution and homogenized gridded land surface air temperature data: A case study over pan-east Asia. Frontiers in Environmental Science, 8, 588570, https://doi.org/10.3389/fenvs.2020.588570.
Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 1935−1944, https://doi.org/10.1002/qj.2297.
Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48(4), RG404, https://doi.org/10.1029/2010RG000345.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Huang, B. Y., and Coauthors, 2015: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 3119−3142, https://doi.org/10.1175/JCLI-D-15-0430.1.
Huang, B. Y., and Coauthors, 2017a: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, B. Y., and Coauthors, 2020: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Climate, 33, 1351−1379, https://doi.org/10.1175/JCLI-D-19-0395.1.
Huang, J. B., and Coauthors, 2017b: Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7, 875−879, https://doi.org/10.1038/s41558-017-0009-5.
Jones, P., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33(3), 269−282, https://doi.org/10.1007/s00376-015-5194-4.
Kadow, C., D. M. Hall, and U. Ulbrich, 2020: Artificial intelligence reconstructs missing climate information. Nature Geoscience, 13, 408−413, https://doi.org/10.1038/s41561-020-0582-5.
Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469−1472, https://doi.org/10.1126/science.aaa5632.
Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.
Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res., 124(12), 6307−6326, https://doi.org/10.1029/2018JD029522.
Lewandowsky, S., J. S. Risbey, and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723−733, https://doi.org/10.1175/BAMS-D-14-00106.1.
Li, Q. X., and Q. P. Tu, 2000: Interpolation and primary analysis of northern hemisphere land surface precipitation in the past 100 years. Journal of Nanjing Institute of Meteorology, 23(4), 528−535, https://doi.org/10.3969/j.issn.1674-7097.2000.04.009. (in Chinese with English abstract
Li, Q. X., and Q. P. Tu, 2002: The regional characters of annual precipitation in northern hemisphere land surface and China and their correlation. Journal of Nanjing Institute of Meteorology, 25(1), 92−99, https://doi.org/10.3969/j.issn.1674-7097.2002.01.012. (in Chinese with English abstract
Li, Q. X., W. J. Dong, W. Li, X. R. Gao, P. Jones, J. Kennedy, and D. Parker, 2010: Assessment of the uncertainties in temperature change in China during the last century. Chinese Science Bulletin, 55, 1974−1982, https://doi.org/10.1007/s11434-010-3209-1.
Li, Q. X., W. B. Sun, B. Y. Huang, W. J. Dong, X. L. Wang, P. M. Zhai, and P. Jones, 2020: Consistency of global warming trends strengthened since 1880s. Science Bulletin, 65(20), 1709−1712, https://doi.org/10.1016/j.scib.2020.06.009.
Li, Q. X., and Coauthors, 2021: An updated evaluation of the global mean Land Surface Air Temperature and Surface Temperature trends based on CLSAT and CMST. Climate Dyn., https://doi.org/10.1007/s00382-020-05502-0.
Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the 'global warming hiatus. Nature, 545, 41−47, https://doi.org/10.1038/nature22315.
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.
Morice, C. P., and Coauthors, 2020: An updated assessment of near-surface temperature change from 1850: The HadCRUT5 dataset. J. Geophys. Res., https://doi.org/10.1029/2019JD032361.
Osborn, T. J., P. D. Jones, D. H. Lister, C. P. Morice, I. R. Simpson, J. P. Winn, E. Hogan, and I. C. Harris, 2020: Land surface air temperature variations across the globe updated to 2019: The CRUTEM5 dataset. J. Geophys. Res., 125, e2019JD032352, https://doi.org/10.1029/2019JD032352.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: LU decomposition and its applications. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 34−42.
Rohde, R., and Coauthors, 2013: A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinformatics & Geostatistics: An Overview, 1, 1, https://doi.org/10.4172/2327-4581.1000101.
Simmons, A. J., P. Berrisford, D. P. Dee, H. Hersbach, S. Hirahara, and J. N. Thépaut, 2017: A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Quart. J. Roy. Meteor. Soc., 143, 101−119, https://doi.org/10.1002/qj.2949.
Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21, 2283−2296, https://doi.org/10.1175/2007JCLI2100.1.
Thorne, P. W., and Coauthors, 2011: Guiding the creation of a comprehensive surface temperature resource for twenty-first- century climate science. Bull. Amer. Meteor. Soc., 92(11), ES40−ES47, https://doi.org/10.1175/2011BAMS3124.1.
van den Dool, H. M., S. Saha, and Å. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13(8), 1421−1435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.
Vose, R. S., and Coauthors, 2012: NOAA's merged land-ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93(11), 1677−1685, https://doi.org/10.1175/BAMS-D-11-00241.1.
Xu, W. H., and Coauthors, 2018: A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dyn., 50, 2513−2536, https://doi.org/10.1007/s00382-017-3755-1.
Yun, X., B. Y. Huang, J. Y. Cheng, W. H. Xu, S. B. Qiao, and Q. X. Li, 2019: A new merge of global surface temperature datasets since the start of the 20th Century. Earth System Science Data, 11, 1629−1643, https://doi.org/10.5194/essd-11-1629-2019.