Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2012: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteorol. Climatol., 52, 682−700, https://doi.org/10.1175/JAMC-D-12-028.1.
Bao, X. W., L. G. Wu, B. Tang, L. M. Ma, D. Wu, J. Tang, H. J. Chen, and L. Y. Wu, 2019: Variable raindrop size distributions in different rainbands associated with typhoon Fitow (2013). J. Geophys. Res., 124, 12 262−12 281, https://doi.org/10.1029/2019JD030268.
Bao, X. W., and Coauthors, 2020: Distinct raindrop size distributions of convective inner- and outer-rainband rain in typhoon maria (2018). J. Geophys. Res., 125, e2020JD032482, https://doi.org/10.1029/2020JD032482.
Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol. Climatol., 41, 674−685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.
Brandes, E. A., G. F. Zhang, and J. Z. Sun, 2006: On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteorol. Climatol., 45, 259−268, https://doi.org/10.1175/JAM2335.1.
Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354−365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Rese. Lett., 43, 910−917, https://doi.org/10.1002/2015GL067278.
Brown, B. R., M. M. Bell, and G. Thompson, 2017: Improvements to the snow melting process in a partially double moment microphysics parameterization. Journal of Advances in Modeling Earth Systems, 9, 1150−1166, https://doi.org/10.1002/2016MS000892.
Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687−2710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.
Chang, W. Y., T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western pacific from the 2d video disdrometer and NCU C-Band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973−1993, https://doi.org/10.1175/2009JTECHA1236.1.
Chang, W. Y., W. C. Lee, and Y. C. Liou, 2014: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317−340, https://doi.org/10.1175/MWR-D-14-00081.1.
Chen, F. J., Y. F. Fu, and Y. J. Yang, 2019a: Regional variability of precipitation in tropical cyclones over the western North Pacific revealed by the GPM Dual-frequency precipitation radar and microwave imager. J. Geophys. Res., 124, 11 281−11 296, https://doi.org/10.1029/2019JD031075.
Chen, H., V. Chandrasekar, and R. Cifelli, 2019b: A deep learning approach to dual-polarization radar rainfall estimation. Preprints, 2019 URSI Asia-Pacific Radio Science Conf. (AP-RASC), 1−2, https://doi.org/10.23919/URSIAP-RASC.2019.8738337.
DeMott, C. A., and S. A. Rutledge, 1998: Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55, 2730−2747, https://doi.org/10.1175/1520-0469(1998)055<2730:TVSOTC>2.0.CO;2.
Didlake, A. C., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 4521−4541, https://doi.org/10.1175/MWR-D-17-0035.1.
Didlake, A. C., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 45, 13 513−13 522, https://doi.org/10.1029/2018GL080739.
Golestani, Y., V. Chandrasekar, and V. N. Bringi, 1989: Intercomparison of multiparameter radar measurements. Proc. 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 309−314.
Guo, Z. Y., Z. P. Sun, J. Guo, F. F. Li, and Z. C. Bu, 2019: A Method for Calibrating Zdr by Using Light Rain Echo in Volume Scan Data. 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 1−3, https://doi.org/10.1109/ICMO49322.2019.9025914.
Hence, D. A., and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 1637−1652, https://doi.org/10.1175/2011JAS3578.1.
Hence, D. A., and R. A. Houze Jr., 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 2644−2661, https://doi.org/10.1175/JAS-D-11-0323.1.
Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293−344, https://doi.org/10.1175/2009MWR2989.1.
Houze, R. A., F. D. Marks Jr., and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of Ice Particles. J. Atmos. Sci., 49, 943−963, https://doi.org/10.1175/1520-0469(1992)049<0943:DAIOTI>2.0.CO;2.
Kalina, E. A., and Coauthors, 2017: The ice water paths of small and large ice species in Hurricanes Arthur (2014) and Irene (2011). J. Appl. Meteorol. Climatol., 56, 1383−1404, https://doi.org/10.1175/JAMC-D-16-0300.1.
Khain, A., B. Lynn, and J. Shpund, 2016: High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmospheric Research, 167, 129−145, https://doi.org/10.1016/j.atmosres.2015.07.014.
Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer, 15−63, https://doi.org/10.1007/978-3-319-72583-3_2.
Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteorol. Climatol., 49, 1247−1267, https://doi.org/10.1175/2010JAMC2243.1.
Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 2042−2060, https://doi.org/10.1175/JAS-D-11-0125.1.
Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052−3067, https://doi.org/10.1175/JAS-D-13-0357.1.
Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Optics Express, 22, 1655−1660, https://doi.org/10.1364/OE.22.001655.
Li, H. R., D. Moisseev, and A. von Lerber, 2018: How does riming affect dual-polarization radar observations and snowflake shape? J. Geophys. Res., 123, 6070−6081, https://doi.org/10.1029/2017JD028186.
Li, H. R., J. Tiira, A. von Lerber, and D. Moisseev, 2020a: Towards the connection between snow microphysics and melting layer: Insights from multifrequency and dual-polarization radar observations during BAECC. Atmospheric Chemistry and Physics, 20, 9547−9562, https://doi.org/10.5194/acp-20-9547-2020.
Li, J. N., C. H. Ding, F. Z. Li, and Y. L. Chen, 2020b: Effects of single- and double-moment microphysics schemes on the intensity of super typhoon Sarika (2016). Atmospheric Research, 238, 104894, https://doi.org/10.1016/j.atmosres.2020.104894.
Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteorol., 5, 165−166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
May, P. T., J. D. Kepert, and T. D. Keenan, 2008: Polarimetric radar observations of the persistently asymmetric structure of tropical cyclone Ingrid. Mon. Wea. Rev., 136, 616−630, https://doi.org/10.1175/2007MWR2077.1.
Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535−575, https://doi.org/10.1016/0022-4073(96)00002-7.
Moisseev, D. N., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res., 120, 12 644−12 655, https://doi.org/10.1002/2015JD023884.
Murphy, J. M., S. J. Haase, R. Padullés, S.-H. Chen, and A. M. Morris, 2019: The potential for discriminating microphysical processes in Numerical Weather Forecasts using airborne polarimetric radio occultations. Remote Sensing, 11, 2268, https://doi.org/10.3390/rs11192268.
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730−748, https://doi.org/10.1175/2008WAF2222205.1.
Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, R. M. Wakimoto and R. Srivastava, Eds., American Meteorological Society, 237−258, https://doi.org/10.1007/978-1-878220-36-3_10.
Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809−824, https://doi.org/10.1175/BAMS-86-6-809.
Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteorol. Climatol., 55, 1771−1787, https://doi.org/10.1175/JAMC-D-15-0338.1.
Schuur, T., A. Ryzhkov, and P. Heinselman, 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA/National Severe Storms Laboratory Rep, 46 pp.
Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. Climatol., 34, 1978−2007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.
Sun, Y., H. Xiao, H. L. Yang, L. Feng, H. N. Chen, and L. Luo, 2020: An inverse mapping table method for raindrop size distribution parameters retrieval using X-band dual-polarization radar observations. IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2020.2982687.
Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “Normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteorol. Climatol., 40, 1118−1140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteorol., 22, 1764−1775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.
Vivekanandan, J., G. F. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteorol. Climatol., 43, 217−230, https://doi.org/10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.
Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381−388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.
Wang, M. J., K. Zhao, M. Xue, G. F. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res., 121, 12 415−12 433, https://doi.org/10.1002/2016JD025307.
Wang, M. J., K. Zhao, W.-C. Lee, and F. Q. Zhang, 2018: Microphysical and kinematic structure of convective-scale elements in the inner rainband of typhoon Matmo (2014) after landfall. J. Geophys. Res., 123, 6549−6564, https://doi.org/10.1029/2018JD028578.
Wang, M. J., K. Zhao, Y. J. Pan, and M. Xue, 2020: Evaluation of simulated drop size distributions and microphysical processes using polarimetric radar observations for landfalling typhoon Matmo (2014). J. Geophys. Res., 125, e2019JD031527, https://doi.org/10.1029/2019JD031527.
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250−1273, https://doi.org/10.1175/2008JAS2737.1.
Wen, J., and Coauthors, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in eastern China. J. Geophys. Res., 122, 8033−8050, https://doi.org/10.1002/2016JD026346.
Wen, L., and Coauthors, 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res., 123, 6529−6548, https://doi.org/10.1029/2017JD027950.
Willoughby, H. E., 1989: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242−264, https://doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.
Wu, C., L. P. Liu, M. Wei, B. Z. Xi, and M. H. Yu, 2018a: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35, 296−316, https://doi.org/10.1007/s00376-017-6241-0.
Wu, D., and Coauthors, 2018b: Kinematics and microphysics of convection in the outer rainband of typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 2147−2159, https://doi.org/10.1175/MWR-D-17-0320.1.
Wu, Z. H., Y. Zhang, L. F. Zhang, H. C. Lei, Y. Q. Xie, L. Wen, and J. F. Yang, 2019: Characteristics of summer season raindrop size distribution in Three Typical Regions of Western Pacific. J. Geophys. Res., 124, 4054−4073, https://doi.org/10.1029/2018JD029194.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the china meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yu, C.-K., and C.-L. Tsai, 2012: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 56−72, https://doi.org/10.1175/JAS-D-12-090.1.
Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 1964−1983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830−841, https://doi.org/10.1109/36.917906.
Zhao, K., and Coauthors, 2019: Recent progress in dual-polarization radar research and applications in China. Adv. Atmos. Sci., 36, 961−974, https://doi.org/10.1007/s00376-019-9057-2.