Allen, M., B. B. B. Booth, D. J. Frame, J. M. Gregory, J. A. Kettleborough, L. A. Smith, D. A. Stainforth, and P. A. Stott, 2004: Observational constraints on future climate: Distinguishing robust from model-dependent statements of uncertainty in climate forecasting. Proc. IPCC Workshop on Communicating Uncertainty and Risk, Vol. 11, Maynooth, Ireland, 14 pp.
Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332(6026), 220−224, https://doi.org/10.1126/science.1201224.
Chai, R. F., S. L. Sun, H. S. Chen, and S. J. Zhou, 2018: Changes in reference evapotranspiration over China during 1960-2012: Attributions and relationships with atmospheric circulation. Hydrological Processes, 32(19), 3032−3048, https://doi.org/10.1002/hyp.13252.
Chen, H. P., J. Q. Sun, W. Q. Lin, and H. W. Xu, 2020: Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 65(17), 1415−1418, https://doi.org/10.1016/j.scib.2020.05.015.
Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1029−1136.
Ding, T., Qian, W., and Yan, Z., 2010: Changes in hot days and heat waves in China during 1961−2007. International Journal of Climatology, 30(10), 1452−1462, https://doi.org/10.1002/joc.1989.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 20(13), 7829−7842, https://doi.org/10.5194/acp-20-7829-2020.
Fu, Y. H., R. Y. Lu, and D. Guo, 2018: Changes in surface air temperature over China under the 1.5°C and 2.0°C global warming targets. Advances in Climate Change Research, 9(2), 112−119, https://doi.org/10.1016/j.accre.2017.12.001.
Hu, T., Y. Sun, and X. B. Zhang, 2017: Temperature and precipitation projection at 1.5 and 2°C increase in global mean temperature. Chinese Science Bulletin, 62(26), 3098−3111, https://doi.org/10.1360/N972016-01234.(inChinesewithEnglishabstract). (in Chinese with English abstract)
Huang, J. P., H. P. Yu, A. G. Dai, Y. Wei, and L. T. Kang, 2017: Drylands face potential threat under 2°C global warming target. Nature Climate Change, 7(6), 417−422, https://doi.org/10.1038/nclimate3275.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, 1535 pp.
Jiang, J., T. J. Zhou, X. L. Chen, and L. X. Zhang, 2020: Future changes in precipitation over Central Asia based on CMIP6 projections. Environmental Research Letters, 15(5), 054009, https://doi.org/10.1088/1748-9326/ab7d03/meta.
Jiang, T., and Coauthors, 2017: National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Climate Change Research, 13(2), 128−137, https://doi.org/10.12006/j.issn.1673-1719.2016.249. (in Chinese with English abstract)
Jones, B., and B. C. O'Neill, 2016: Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environmental Research Letters, 11, 084003, https://doi.org/10.1088/1748-9326/11/8/084003.
Jones, B., and B. C. O'Neill, 2020: Global one-eighth degree population base year and projection grids based on the shared socioeconomic pathways, revision 01. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, https://doi.org/10.7927/m30p-j498.
King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nature Climate Change, 7(6), 412−416, https://doi.org/10.1038/nclimate3296.
Li, D. H., T. J. Zhou, L. W. Zou, W. X. Zhang, and L. X. Zhang, 2018: Extreme high-temperature events over East Asia in 1.5°C and 2°C warmer futures: Analysis of NCAR CESM low-warming experiments. Geophysical Research Letters, 45, 1541−1550, https://doi.org/10.1002/2017gl076753.
Li, X. Y., and Coauthors, 2019: Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) mountains, Northeast China. Permafrost and Periglacial Processes, 30(3), 163−177, https://doi.org/10.1002/ppp.2001.
Liang, X. Z., and Coauthors, 2019: CWRF performance at downscaling China climate characteristics. Climate Dynamics, 52(3−4), 2159−2184, https://doi.org/10.1007/s00382-018-4257-5.
Lin, L., Z. L. Wang, Y. Y. Xu, X. Y. Zhang, H. Zhang, and W. J. Dong, 2018: Additional intensification of seasonal heat and flooding extreme over China in a 2°C warmer world compared to 1.5°C. Earth’s Future, 6, 968−978, https://doi.org/10.1029/2018EF000862.
Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994−997, https://doi.org/10.1126/science.1098704.
Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nature Climate Change, 7(7), 501−506, https://doi.org/10.1038/nclimate3322.
Nangombe, S., T. J. Zhou, W. X. Zhang, B. Wu, S. Hu, L. W. Zou, and D. H. Li, 2018: Record-breaking climate extremes in Africa under stabilized 1.5°C and 2°C global warming scenarios. Nature Climate Change, 8, 375−380, https://doi.org/10.1038/s41558-018-0145-6.
O’Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169−180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.
Robine, J. M., S. L. K. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths, J.-P. Michel, and F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171−178, https://doi.org/10.1016/j.crvi.2007.12.001.
Samset, B. H., M. Sand, C. J. Smith, S. E. Bauer, P. M. Forster, J. S. Fuglestvedt, S. Osprey, and C.-F. Schleussner, 2018: Climate impacts from a removal of anthropogenic aerosol emissions. Geophysical Research Letters, 45, 1020−1029, https://doi.org/10.1002/2017GL076079.
Sanderson, B. M., and Coauthors, 2017: Community climate simulations to assess avoided impacts in 1.5°C and 2°C futures. Earth System Dynamics, 8(3), 827−847, https://doi.org/10.5194/esd-8-827-2017.
Seneviratne, S. I., M. G. Donat, A. J. Pitman, R. Knutti, and R. L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529(7587), 477−483, https://doi.org/10.1038/nature16542.
Shi, C., Z. H. Jiang, W. L. Chen, and L Li, 2018a: Changes in temperature extremes over China under 1.5°C and 2°C global warming targets. Advances in Climate Change Research, 9(2), 120−129, https://doi.org/10.1016/j.accre.2017.11.003.
Shi, Y., D. F. Zhang, Y. Xu, and B.-T. Zhou, 2018b: Changes of heating and cooling degree days over China in response to global warming of 1.5°C, 2°C, 3°C and 4°C. Advances in Climate Change Research, 9, 192−200, https://doi.org/10.1016/j.accre.2018.06.003.
Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118(3−4), 811−825, https://doi.org/10.1007/s10584-012-0659-2.
Su, B. D., and Coauthors, 2018: Drought losses in China might double between the 1.5°C and 2.0°C warming. Proceedings of the National Academy of Sciences of the United States of America, 115, 10600−10605, https://doi.org/10.1073/pnas.1802129115.
Tao, F., and Zhang, Z., 2013: Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 170, 146−165, https://doi.org/10.1016/j.agrformet.2011.10.003.
The Third National Assessment Report on Climate Change, 2015: The Third National Assessment Report on Climate Change. Science Press, Beijing. 280 pp. (in Chinese)
UNFCCC, 2015: Adoption of the Paris Agreement. Proposal by the President. Report No. Proposal by the President. FCCC/CP/2015/L.9/Rev.1. [Available online from https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf].
Wang, H. L., Y. T. Gan, R. Y. Wang, J.Y. Niu, H. Zhao, Q.G. Yang, and G.C. Li, 2008: Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology, 148(8−9), 1242−1251, https://doi.org/10.1016/j.agrformet.2008.03.003.
Wang, X. X., D. B. Jiang, and X. M. Lang, 2018: Climate change of 4°C global warming above pre-industrial levels. Adv. Atmos. Sci., 35, 757−770, https://doi.org/10.1007/s00376-018-7160-4.
Weber, T., A. Haensler, D. Rechid, S. Pfeifer, B. Eggert, and D. Jacob, 2018: Analyzing regional climate change in Africa in a 1.5°C, 2°C and 3°C global warming world. Earth’s Future, 6, 643−655, https://doi.org/10.1002/2017EF000714.
Wilbanks, T., and Coauthors, 2012: Climate Change and Infrastructure, Urban Systems, and Vulnerabilities: Technical Report for the U.S. Department of Energy in Support of the National Climate Assessment, 29 February 2012. [Available from https://www.esd.ornl.gov/eess/Infrastructure.pdf]
World Meteorological Association, 2020: WMO Statement on the State of the Global Climate in 2019. WMO. 44 pp.
Xu, Y., B. T. Zhou, J. Wu, Z. Y. Han, Y. X. Zhang, and J. Wu, 2017: Asian climate change under 1.5°C−4°C warming targets. Advances in Climate Change Research, 8, 99−107, https://doi.org/10.1016/j.accre.2017.05.004.
Yang, X. Y., G. Zeng, G. W. Zhang, V. Iyakaremye, and Y. Xu, 2020: Future projections of winter cold surge paths over East Asia from CMIP6 models. International Journal of Climatology, https://doi.org/10.1002/joc.6797.
Yang, Y., J. P. Tang, S. Y. Wang, and G. Liu, 2018: Differential impacts of 1.5°C and 2°C warming on extreme events over China using statistically downscaled and bias-corrected CESM low-warming experiment. Geophysical Research Letters, 45(18), 9852−9860, https://doi.org/10.1029/2018gl079272.
Yu, R., P. M. Zhai, and Y. Y. Lu, 2018: Implications of differential effects between 1.5°C and 2°C global warming on temperature and precipitation extremes in China’s urban agglomerations. International Journal of Climatology, 38, 2374−2385, https://doi.org/10.1002/joc.5340.
Yu, S., and Coauthors, 2019: Loss of work productivity in a warming world: Differences between developed and developing countries. Journal of Cleaner Production, 208, 1219−1225, https://doi.org/10.1016/j.jclepro.2018.10.067.
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhang, G. W., G. Zeng, C. Li, and X. Y. Yang, 2020a: Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Climate Dynamics, 54(5), 3003−3020, https://doi.org/10.1007/s00382-020-05155-z.
Zhang, G. W., G. Zeng, V. Iyakaremye, and Q.-L. You, 2020b: Regional changes in extreme heat events in China under stabilized 1.5°C and 2.0°C global warming. Advances in Climate Change Research, 11(3), 198−209, https://doi.org/10.1016/j.accre.2020.08.003.
Zhao, S. Y., T. J. Zhou, and X. L. Chen, 2020: Consistency of extreme temperature changes in China under a historical half-degree warming increment across different reanalysis and observational datasets. Climate Dynamics, 54(3−4), 2465−2479, https://doi.org/10.1007/s00382-020-05128-2.
Zhou, T. J., N. Sun, W. X. Zhang, X. L. Chen, D. D. Peng, D. H. Li, L. W. Ren, and M. ZUO, 2018: When and how will the Millennium Silk Road witness 1.5°C and 2°C warmer worlds? Atmospheric and Oceanic Science Letters, 11(2), 180−188, https://doi.org/10.1080/16742834.2018.1440134.
Zhou, T. J., and Coauthors, 2020: Development of climate and earth system models in China: Past achievements and new CMIP6 results. Journal of Meteorological Research, 34(1), 1−19, https://doi.org/10.1007/s13351-020-9164-0.
Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37, 1119−1132, https://doi.org/10.1007/s00376-020-9289-1.