Al-Jiboori, M. H., and H. Fei, 2005: Surface roughness around a 325-m meteorological tower and its effect on urban turbulence. Adv. Atmos. Sci., 22(4), 595−605, https://doi.org/10.1007/BF02918491.
Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63(11), 2700−2719, https://doi.org/10.1175/JAS3776.1.
Bosveld, F. C., P. Baas, A. C. M. Beljaars, A. A. M. Holtslag, J. V. G. de Arellano, and B. J. H. van de Wiel, 2020: Fifty years of atmospheric boundary-layer research at cabauw serving weather, air quality and climate. Bound.-Layer Meteorol., 177, 583−612, https://doi.org/10.1007/s10546-020-00541-w.
Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteorol., 118(2), 273−303, https://doi.org/10.1007/s10546-005-3780-1.
Gallagher, M. W., T. W. Choularton, and M. K. Hill, 1988: Some observations of airflow over a large hill of moderate slope. Bound.-Layer Meteorol., 42(3), 229−250, https://doi.org/10.1007/BF00123814.
Glickman, T., 2000: Glossary of Meteorology. 2nd ed. American Meteorological Society, 850 pp.
Grimmond, S., 2007: Urbanization and global environmental change: Local effects of urban warming. The Geographical Journal, 173, 83−88, https://doi.org/10.1111/j.1475-4959.2007.232_3.x.
Han, S. Q., and Coauthors, 2018: Boundary layer structure and scavenging effect during a typical winter haze-fog episode in a core city of BTH region, China. Atmos. Environ., 179, 187−200, https://doi.org/10.1016/j.atmosenv.2018.02.023.
He, X. D., Y. H. Li, X. R. Wang, L. Chen, B. Yu, Y. Z. Zhang, and S. G. Miao, 2019: High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF/Urban modelling system. Journal of Cleaner Production, 208, 373−383, https://doi.org/10.1016/j.jclepro.2018.10.086.
Holdsworth, A. M., and A. H. Monahan, 2019: Turbulent collapse and recovery in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget. J. Atmos. Sci., 76, 1307−1327, https://doi.org/10.1175/JAS-D-18-0312.1.
Jacobs, A. F. G., B. J. H. Van de Wiel, and A. A. M. Holtslag, 2001: Daily course of skewness and kurtosis within and above a crop canopy. Agricultural and Forest Meteorology, 110(2), 71−84, https://doi.org/10.1016/S0168-1923(01)00278-7.
Kaiser, A., D. Faranda, S. Krumscheid, D. Belušić, and N. Vercauteren, 2020: Detecting regime transitions of the nocturnal and polar near-surface temperature inversion. J. Atmos. Sci., 77(8), 2921−2940, https://doi.org/10.1175/JAS-D-19-0287.1.
Karipot, A., M. Y. Leclerc, G. S. Zhang, K. F. Lewin, J. Nagy, G. R. Hendrey, and G. Starr, 2008: Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy. J. Geophys. Res.: Atmos., 113(D10), D10102, https://doi.org/10.1029/2007jd009149.
Kaufmann, R. K., K. C. Seto, A. Schneider, Z. T. Liu, L. M. Zhou, and W. L. Wang, 2007: Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate, 20, 2299−2306, https://doi.org/10.1175/JCLI4109.1.
Lemone, M. A., and Coauthors, 2019: 100 years of progress in boundary layer meteorology. Meteor. Monogr., 59, 9.1−9.85, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0013.1.
Li, L., P. W. Chan, D. L. Wang, and M. Y. Tan, 2015: Rapid urbanization effect on local climate: Intercomparison of climate trends in Shenzhen and Hong Kong, 1968−2013. Climate Research, 63, 145−155, https://doi.org/10.3354/cr01293.
Li, L., P. W. Chan, T. Deng, H. L. Yang, H. Y. Luo, D. Xia, and Y. Q. He, 2021: Review of advances in urban climate study in the Guangdong-Hong Kong-Macau Greater Bay Area, China. Atmos. Res., 261, 105759, https://doi.org/10.1016/j.atmosres.2021.105759.
Li, W., T. Hiyama, and N. Kobayashi, 2007: Turbulence spectra in the near-neutral surface layer over the Loess Plateau in China. Bound.-Layer Meteorol., 124, 449−463, https://doi.org/10.1007/s10546-007-9180-y.
Liang, J. N., L. Zhang, Y. Wang, X. J. Cao, Q. Zhang, H. B. Wang, and B. D. Zhang, 2014: Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. J. Geophys. Res.: Atmos., 119(10), 6009−6021, https://doi.org/10.1002/2014JD021510.
Liu, L., and F. Hu, 2020: Finescale clusterization intermittency of turbulence in the atmospheric boundary layer. J. Atmos. Sci., 77(7), 2375−2392, https://doi.org/10.1175/JAS-D-19-0270.1.
Lyu, R., F. Hu, L. Liu, J. J. Xu, and X. L. Cheng, 2018: High-order statistics of temperature fluctuations in an unstable atmospheric surface layer over grassland. Adv. Atmos. Sci., 35(10), 1265−1276, https://doi.org/10.1007/s00376-018-7248-x.
Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteorol., 90(3), 375−396, https://doi.org/10.1023/A:1001765727956.
Mahrt, L., and D. Vickers, 2002: Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteorol., 105(2), 351−363, https://doi.org/10.1023/A:1019964720989.
Mahrt, L., and R. Mills, 2009: Horizontal diffusion by submeso motions in the stable boundary layer. Environmental Fluid Mechanics, 9, 443−456, https://doi.org/10.1007/s10652-009-9126-7.
Mahrt, L., C. Thomas, S. Richardson, N. Seaman, D. Stauffer, and M. Zeeman, 2013: Non-stationary generation of weak turbulence for very stable and weak-wind conditions. Bound.-Layer Meteorol., 147, 179−199, https://doi.org/10.1007/s10546-012-9782-x.
Mamtimin, A., Y. Wang, H. Sayit, X. H. Yang, F. Yang, W. Huo, C. L. Zhou, and L. L. Jin, 2021: Characteristics of turbulence over the semi-fixed desert area north of Xinjiang, China. Earth Surface Processes and Landforms, 46, 2365−2378, https://doi.org/10.1002/esp.5182.
Nappo, C. J., and P. E. Johansson, 1999: Summary of the Lövånger international workshop on turbulence and diffusion in the stable planetary boundary layer. Bound.-Layer Meteorol., 90, 345−374, https://doi.org/10.1023/A:1026458421572.
Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 16−33, https://doi.org/10.1175/1520-0469(2003)060<0016:SFIITS>2.0.CO;2.
Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41(14), 2202−2216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.
Oke, T. R., G. Mills, A. Christen, and J. A. Voogt, 2017: Urban Climates. Cambridge University Press, 525 pp.
Russell, E. S., H. P. Liu, Z. M. Gao, B. Lamb, and N. Wagenbrenner, 2016: Turbulence dependence on winds and stability in a weak-wind canopy sublayer over complex terrain. J. Geophys. Res.: Atmos., 121, 11 502−11 515,
Shi, Y., and F. Hu, 2020: Ramp-Like PM2.5 accumulation process and Z-less similarity in the stable boundary layer. Geophys. Res. Lett., 47(3), e2019GL086530, https://doi.org/10.1029/2019GL086530.
Shi, Y., F. Hu, G. Q. Fan, and Z. Zhang, 2019: Multiple technical observations of the atmospheric boundary layer structure of a red-alert haze episode in Beijing. Atmospheric Measurement Techniques, 12, 4887−4901, https://doi.org/10.5194/amt-12-4887-2019.
Shi, Y., Q. C. Zeng, L. Liu, X. L. Cheng, and F. Hu, 2022: Important role of turbulent wind gust and its coherent structure in the rapid removal of urban air pollution. Environmental Research Communications, 4, 075001, https://doi.org/10.1088/2515-7620/ac7c5f.
Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer. Prentice Hall, 317 pp.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp,
Sun, J. L., 2011 Vertical variations of mixing lengths under neutral and stable conditions during CASES-99. J. Appl. Meteorol. Climatol., 50, 2030−2041,
Sun, J. L., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASE-S99,. J. Atmos. Sci., 69, 338−351, https://doi.org/10.1175/JAS-D-11-082.1.
Udina, M., M. R. Soler, S. Viana, and C. Yagüe, 2013: Model simulation of gravity waves triggered by a density current. Quart. J. Roy. Meteor. Soc., 139, 701−714, https://doi.org/10.1002/qj.2004.
Van de Wiel, B. J. H., and Coauthors, 2017: Regime transitions in near-surface temperature inversions: A conceptual model. J. Atmos. Sci., 74, 1057−1073, https://doi.org/10.1175/JAS-D-16-0180.1.
Wang, L. L., H. Wang, J. K. Liu, Z. Q. Gao, Y. J. Yang, X. Y. Zhang, Y. B. Li, and M. Huang, 2019: Impacts of the near-surface urban boundary layer structure on PM2.5 concentrations in Beijing during winter. Science of the Total Environment, 669, 493−504, https://doi.org/10.1016/j.scitotenv.2019.03.097.
Yus-Díez, J., M. Udina, M. R. Soler, M. Lothon, E. Nilsson, J. Bech, and J. L. Sun, 2019: Nocturnal boundary layer turbulence regimes analysis during the BLLAST campaign. Atmospheric Chemistry and Physics, 19(14), 9495−9514, https://doi.org/10.5194/acp-19-9495-2019.
Zhang, Z., Y. Shi, H. J. Sun, L. Liu, and F. Hu, 2021: Positive and negative turbulent heat diffusivity observed on a 325-m meteorological tower in Beijing. Atmos. Ocean. Sci. Lett., 14, 100009, https://doi.org/10.1016/j.aosl.2020.100009.
Zhou, B. W., S. W. Sun, K. Yao, and K. F. Zhu, 2018: Reexamining the gradient and countergradient representation of the local and nonlocal heat fluxes in the convective boundary layer. J. Atmos. Sci., 75(7), 2317−2336, https://doi.org/10.1175/JAS-D-17-0198.1.