Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151−183, https://doi.org/10.2151/jmsj.2016-009.
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261−268, https://doi.org/10.1038/ngeo2398.
Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513−516, https://doi.org/10.1126/science.245.4917.513.
Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601−16615, https://doi.org/10.1029/JD095iD10p16601.
Chen, J. N., B. Jie, Z. H. Zhou, and H. X. Fang, 2017: Summary of inversion methods to remote sensing cloud top height with satellite data. Meteorological, Hydrological and Marine Instruments, 34, 116−120, https://doi.org/10.3969/j.issn.1006-009X.2017.01.029. (in Chinese with English abstract
Du, M. Y., S. Kawashima, S. Yonemura, X. Z. Zhang, and S. B. Chen, 2004: Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 41, 241−249, https://doi.org/10.1016/j.gloplacha.2004.01.010.
Eyre, J., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo No 176, 28 pp, https://doi.org/10.21957/xsg8d92y3.
Fan, H. J., Y. P. Huang, and W. B. Li, 2017: Overview of retrieval algorithm of cloud-top height based on satellite infrared remote sensing. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 783−792, https://doi.org/10.13209/j.0479-8023.2016.126. (in Chinese with English abstract
Fischer, J., and H. Grassl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A Band. Part 1: Theoretical study. J. Appl. Meteorol., 30, 1245−1259, https://doi.org/10.1175/1520-0450(1991)030<1245:DOCTHF>2.0.CO;2.
Fischer, J., W. Cordes, A. Schmitz-Peiffer, W. Renger, and P. Mörl, 1991: Detection of cloud-top height from backscattered radiances within the Oxygen A Band. Part 2: Measurements. J. Appl. Meteorol., 30, 1260−1267, https://doi.org/10.1175/1520-0450(1991)030<1260:DOCTHF>2.0.CO;2.
Garay, M. J., S. P. de Szoeke, and C. M. Moroney, 2008: Comparison of marine stratocumulus cloud top heights in the Southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res., 113, D18204, https://doi.org/10.1029/2008JD009975.
Gui, S., S. L. Liang, and L. Li, 2010: Evaluation of satellite-estimated surface longwave radiation using ground-based observations. J. Geophys. Res., 115, D18214, https://doi.org/10.1029/2009JD013635.
Hamann, U., and Coauthors, 2014: Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmospheric Measurement Techniques, 7, 2839−2867, https://doi.org/10.5194/amt-7-2839-2014.
Hawkinson, J. A., W. Feltz, and S. A. Ackerman, 2005: A comparison of GOES sounder-and cloud lidar-and radar-retrieved cloud-top heights. J. Appl. Meteorol., 44, 1234−1242, https://doi.org/10.1175/JAM2269.1.
Hollars, S., Q. Fu, J. Comstock, and T. Ackerman, 2004: Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmospheric Research, 72, 169−186, https://doi.org/10.1016/j.atmosres.2004.03.015.
Huang, Y., S. Siems, M. Manton, A. Protat, L. Majewski, and H. Nguyen, 2019: Evaluating Himawari-8 cloud products using shipborne and CALIPSO observations: Cloud-top height and cloud-top temperature. J. Atmos. Ocean. Technol., 36, 2327−2347, https://doi.org/10.1175/JTECH-D-18-0231.1.
Huo, J., D. R. Lu, S. Duan, Y. H. Bi, and B. Liu, 2020a: Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar. Atmospheric Measurement Techniques, 13, 1−11, https://doi.org/10.5194/amt-13-1-2020.
Huo, J., J. Li, M. Z. Duan, D. R. Lv, C. Z. Han, and Y. H. Bi, 2020b: Measurement of cloud top height: Comparison of MODIS and ground-based millimeter radar. Remote Sensing, 12, 1616, https://doi.org/10.3390/rs12101616.
Iwabuchi, H., M. Saito, Y. Tokoro, N. S. Putri, and M. Sekiguchi, 2016: Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements. Progress in Earth and Planetary Science, 3, 32, https://doi.org/10.1186/s40645-016-0108-3.
Iwabuchi, H., N. S. Putri, M. Saito, Y. Tokoro, M. Sekiguchi, P. Yang, and B. A. Baum, 2018: Cloud property retrieval from multiband infrared measurements by Himawari-8. J. Meteor. Soc. Japan, 96B, 27−42, https://doi.org/10.2151/jmsj.2018-001.
Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608−1624, https://doi.org/10.1175/BAMS-88-10-1608.
Kuze, A., and K. V. Chance, 1994: Analysis of cloud top height and cloud coverage from satellites using the O2A and B bands. J. Geophys. Res., 99, 14481−14491, https://doi.org/10.1029/94JD01152.
Letu, H. S., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T. M., Riedi, J., Baran, A. J., Ma, R., Wang, T. X., Shang, H. Z., Khatri, P., Chen, L. F., Shi, C. X., Shi, and J. C., 2020: High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ., 239, 16, https://doi.org/10.1016/j.rse.2019.111583.
Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed., Academic Press, 583 pp..
Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729−1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.
Lu, D. R., W. L. Pan, and Y. N. Wang, 2018: Atmospheric profiling synthetic observation system in Tibet. Adv. Atmos. Sci., 35, 264−267, https://doi.org/10.1007/s00376-017-7251-7.
Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.
Min, M., and Coauthors, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteor. Res., 31, 708−719, https://doi.org/10.1007/s13351-017-6161-z.
Mouri, K., T. Izumi, H. Suzue, and R. Yoshida, 2016: Algorithm Theoretical Basis Document of cloud type/phase product. Meteorological Satellite Center Technical Note, 61, 19−31.
NASA, 2020: ISCCP Definition of Cloud Types. [Available from https://isccp.giss.nasa.gov/cloudtypes.html].
Naud, C. M., J. P. Muller, and E. E. Clothiaux, 2003: Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res., 108, 4140, https://doi.org/10.1029/2002JD002887.
Nieman, S. J., J. Schmetz, and W. P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteorol., 32, 1559−1568, https://doi.org/10.1175/1520-0450(1993)032<1559:ACOSTT>2.0.CO;2.
Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57−63, https://doi.org/10.1126/science.243.4887.57.
Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, A. Koch, and L. Van De Berg, 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteorol., 32, 1206−1225, https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2.
Stubenrauch, C. J., A. Del Genio, and W. B. Rossow, 1997: Implementation of subgrid cloud vertical structure inside a GCM and its effect on the radiation budget. J. Climate, 10, 273−287, https://doi.org/10.1175/1520-0442(1997)010<0273:IOSCVS>2.0.CO;2.
Tan, Z. H., S. Ma, X. B. Zhao, W. Yan, and W. Lu, 2019: Evaluation of cloud top height retrievals from China's next-generation geostationary meteorological satellite FY-4A. Journal of Meteorological Research, 33, 553−562, https://doi.org/10.1007/s13351-019-8123-0.
Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040−3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.
Wang, F., and Y. Zhao, 2020: An algorithm for retrieving cloud top height based on geostationary satellite data of Fengyun-4. Journal of Sichuan Normal University (Natural Science), 44(3), https://doi.org/10.3969/j.issn.1001-8395.2021.03.000. (in Chinese with English abstract
Wang, Y., C. H. Wang, C. Z. Shi, and B. H. Xiao, 2018a: Integration of cloud top heights retrieved from FY-2 meteorological satellite, radiosonde, and ground-based millimeter wavelength cloud radar observations. Atmospheric Research, 214, 284−295, https://doi.org/10.1016/j.atmosres.2018.07.025.
Wang, Z., Z. H. Wang, X. Z. Cao, and F. Tao, 2018b: Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar. Atmospheric Research, 199, 113−127, https://doi.org/10.1016/j.atmosres.2017.09.009.
Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geoscientific Model Development, 10, 359−384, https://doi.org/10.5194/gmd-10-359-2017.
Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811, https://doi.org/10.1029/2007GL030676.
Yanai, M. H., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319−351, https://doi.org/10.2151/jmsj1965.70.1B_319.
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637−1658, https://doi.org/10.1175/BAMS-D-16-0065.1.