Allen, J. T., D. J. Karoly, and K. J. Walsh, 2014: Future Australian severe thunderstorm environments. Part I: A novel evaluation and climatology of convective parameters from two climate models for the late twentieth century. J. Climate, 27(10), 3827−3847, https://doi.org/10.1175/JCLI-D-13-00425.1.
Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. Journal of Advances in Modeling Earth Systems, 7(1), 226−243, https://doi.org/10.1002/2014MS000397.
American Meteorological Society, 2019: Precipitation. Glossary of Meteorology. [Available online from http://glossary.ametsoc.org/wiki/climatology]
Borsky, S., and C. Unterberger, 2019: Bad weather and flight delays: The impact of sudden and slow onset weather events. Economics of Transportation, 18, 10−26, https://doi.org/10.1016/j.ecotra.2019.02.002.
Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583−592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.
Brimelow, J. C., G. W. Reuter, and E. R. Poolman, 2002: Modeling maximum hail size in Alberta thunderstorms. Wea. Forecasting, 17(5), 1048−1062, https://doi.org/10.1175/1520-0434(2002)017<1048:MMHSIA>2.0.CO;2.
Brooks, H. E., and C. A. Doswell III, 1996: A comparison of measures-oriented and distributions-oriented approaches to forecast verification. Wea. Forecasting, 11(3), 288−303, https://doi.org/10.1175/1520-0434(1996)011<0288:ACOMOA>2.0.CO;2.
Cheng, C. S., G. L. Li, and H. Auld, 2011: Possible impacts of climate change on freezing rain using downscaled future climate scenarios: Updated for eastern Canada. Atmosphere-Ocean, 49(1), 8−21, https://doi.org/10.1080/07055900.2011.555728.
Coniglio, M. C., K. L. Elmore, J. S. Kain, S. J. Weiss, M. Xue, and M. L. Weisman, 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA hazardous weather testbed spring experiment. Wea. Forecasting, 25(2), 408−427, https://doi.org/10.1175/2009WAF2222258.1.
Czernecki, B., M. Taszarek, M. Marosz, M. Półrolniczak, L. Kolendowicz, A. Wyszogrodzki, and J. Szturc, 2019: Application of machine learning to large hail prediction - The importance of radar reflectivity, lightning occurrence and convective parameters derived from ERA5. Atmospheric Research, 227, 249−262, https://doi.org/10.1016/j.atmosres.2019.05.010.
de Leeuw, J., J. Methven, and M. Blackburn, 2015: Evaluation of ERA-interim reanalysis precipitation products using England and wales observations. Quart. J. Roy. Meteor. Soc., 141(688), 798−806, https://doi.org/10.1002/qj.2395.
Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74(3), 641−663, https://doi.org/10.1175/JAS-D-16-0066.1.
Ding, B. H., K. Yang, J. Qin, L. Wang, Y. Y. Chen, and X. B. He, 2014: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. J. Hydrol., 513, 154−163, https://doi.org/10.1016/j.jhydrol.2014.03.038.
Friedman, J. H., 2001: Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189−1232.
Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32(5), 1819−1840, https://doi.org/10.1175/WAF-D-17-0010.1.
Gjertsen, U., and V. Ødegaard, 2005: The water phase of precipitation - a comparison between observed, estimated and predicted values. Atmospheric Research, 77(1−4), 218−231, https://doi.org/10.1016/j.atmosres.2004.10.030.
Groisman, P. Y., O. N. Bulygina, X. G. Yin, R. S. Vose, S. K. Gulev, I. Hanssen-Bauer, and E. Førland, 2016: Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environmental Research Letters, 11(4), 045007, https://doi.org/10.1088/1748-9326/11/4/045007.
Hanesiak, J. M., X. L. Wang, 2005: Adverse-weather trends in the Canadian arctic. J. Climate, 18(16), 3140−3156, https://doi.org/10.1175/JCLI3505.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999−2049, https://doi.org/10.1002/qj.3803.
Ikeda, K., M. Steiner, J. Pinto, and C. Alexander, 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating high-resolution rapid refresh model. Wea. Forecasting, 28(4), 921−939, https://doi.org/10.1175/WAF-D-12-00085.1.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.
Jolliffe, I. T., D. B. Stephenson, 2012: Forecast Verification: A Practitioner's Guide in Atmospheric Science. 2nd ed., John Wiley & Sons, 292 pp. https://doi.org/10.1002/9781119960003
Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15(6), 700−714, https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.
Kämäräinen, M., O. Hyvärinen, K. Jylhä, A. Vajda, S. Neiglick, J. Nuottokari, and H. Gregow, 2017: A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. Natural Hazards and Earth System Sciences, 17(2), 243−259, https://doi.org/10.5194/nhess-17-243-2017.
Kuhn, M., 2020: Caret: Classification and Regression Training. R Package version 6.0−85. [Available online from https://CRAN.R-project.org/package=caret]
Kursa, M. B., and W. R. Rudnicki, 2010: Feature selection with the Boruta package. Journal of Statistical Software, 36(11), https://doi.org/10.18637/jss.v036.i11.
Lambert, S. J., and B. K. Hansen, 2011: Simulated changes in the freezing rain climatology of North America under global warming using a coupled climate model. Atmosphere-Ocean, 49(3), 289−295, https://doi.org/10.1080/07055900.2011.607492.
Matte, D., J. M. Thériault, and R. Laprise, 2019: Mixed precipitation occurrences over southern Québec, Canada, under warmer climate conditions using a regional climate model. Climate Dyn., 53(1−2), 1125−1141, https://doi.org/10.1007/s00382-018-4231-2.
McGovern, A., K. L. Elmore, D. J. Gagne, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull. Amer. Meteor. Soc., 98(10), 2073−2090, https://doi.org/10.1175/BAMS-D-16-0123.1.
Mekis, É., and L. A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49(2), 163−177, https://doi.org/10.1080/07055900.2011.583910.
Morrison, H., J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72(1), 287−311, https://doi.org/10.1175/JAS-D-14-0065.1.
Ośródka, K., J. Szturc, and A. Jurczyk, 2014: Chain of data quality algorithms for 3-D single-polarization radar reflectivity (RADVOL-QC system). Meteorological Applications, 21(2), 256−270, https://doi.org/10.1002/met.1323.
R Core Team, 2015: R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2014, Vienna, Austria. [Available online from https://www.R-project.org]
Reeves, H. D., K. L. Elmore, A. Ryzhkov, T. Schuur, and J. Krause, 2014: Sources of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29(4), 936−953, https://doi.org/10.1175/WAF-D-14-00007.1.
Reeves, H. D., A. V. Ryzhkov, and J. Krause, 2016: Discrimination between winter precipitation types based on spectral-bin microphysical modeling. J. Appl. Meteorol. Climatol., 55(8), 1747−1761, https://doi.org/10.1175/JAMC-D-16-0044.1.
Schuur, T. J., H. S. Park, A. V. Ryzhkov, and H. D., Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteorol. Climatol., 51, 763−779, https://doi.org/10.1175/JAMC-D-11-091.1.
Singh, V., and M. K. Goyal, 2016: Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmospheric Research, 167, 34−60, https://doi.org/10.1016/j.atmosres.2015.07.005.
Stewart, R. E., J. M. Thériault, and W. Henson, 2015: On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Amer. Meteor. Soc., 96(4), 623−639, https://doi.org/10.1175/BAMS-D-14-00032.1.
Thériault, J. M., and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67(5), 1492−1508, https://doi.org/10.1175/2009JAS3224.1.
Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteorol. Climatol., 49(7), 1429−1442, https://doi.org/10.1175/2010JAMC2321.1.
Ukkonen, P., A. Manzato, and A. Mäkelä, 2017: Evaluation of thunderstorm predictors for Finland using reanalyses and neural networks. J. Appl. Meteorol. Climatol., 56(8), 2335−2352, https://doi.org/10.1175/JAMC-D-16-0361.1.
Undén, P., L. Rontu, H. Jarvinen, P. Lynch, F. J. Calvo Sánchez, F. J., G. Cats, and C. Jones, 2002: HIRLAM-5 scientific documentation. [Available online from https://repositorio.aemet.es/bitstream/20.500.11765/6323/1/HIRLAMSciDoc_Dec2002.pdf]
Vajda, A., H. Tuomenvirta, I. Juga, P. Nurmi, P. Jokinen, and J. Rauhala, 2014: Severe weather affecting European transport systems: The identification, classification and frequencies of events. Natural Hazards, 72(1), 169−188, https://doi.org/10.1007/s11069-013-0895-4.
Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 2nd ed., International Geophysics Series, Elsevier, Amsterdam, 676 pp.
Wright, M. N., and A. Ziegler, 2017: Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1), https://doi.org/10.18637/jss.v077.i01.