Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227−1230, https://doi.org/10.1126/science.245.4923.1227.
Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571−657.
Chen, W., and B. W. Dong, 2019: Anthropogenic impacts on recent decadal change in temperature extremes over China: Relative roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 52, 3643−3660, https://doi.org/10.1007/s00382-018-4342-9.
Dong, B. W., R. T. Sutton, L. Shaffrey, and N. P. Klingaman, 2017: Attribution of forced decadal climate change in coupled and uncoupled ocean–atmosphere model experiments. J. Climate, 30(16), 6203−6223, https://doi.org/10.1175/JCLI-D-16-0578.1.
Dong, B. W., L. J. Wilcox, E. J. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: roles of aerosol-radiation and aerosol-cloud interactions. Climate Dyn., 53, 3235−3256, https://doi.org/10.1007/s00382-019-04698-0.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Ford, T. W., and C. F. Labosier, 2017: Meteorological conditions associated with the onset of flash drought in the Eastern United States. Agricultural and Forest Meteorology, 247, 414−423, https://doi.org/10.1016/j.agrformet.2017.08.031.
Gillett, N. P., and Coauthors, 2016: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geoscientific Model Development, 9, 3685−3697, https://doi.org/10.5194/gmd-9-3685-2016.
Hao, Z. C., A. AghaKouchak, and T. J. Phillips, 2013: Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 8(3), 034014, https://doi.org/10.1088/1748-9326/8/3/034014.
Hirons, L. C., N. P. Klingaman, and S. J. Woolnough, 2015: MetUM-GOML1: A near-globally coupled atmosphere–ocean-mixed-layer model. Geoscientific Model Development, 8, 363−379, https://doi.org/10.5194/gmd-8-363-2015.
Hu, Z. Y., X. Chen, D. L. Chen, J. F. Li, S. Wang, Q. M. Zhou, G. Yin, and M. Y. Guo, 2019: “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. International Journal of Climatology, 39, 1072−1091, https://doi.org/10.1002/joc.5863.
Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the Eastern Asia summer monsoon. Journal of the meteorological society of Japan, 70, 243−256, https://doi.org/10.2151/jmsj1965.70.1B_243.
Hunt, E. D., K. G. Hubbard, D. A. Wilhite, T. J. Arkebauer, and A. L. Dutcher, 2009: The development and evaluation of a soil moisture index. International Journal of Climatology, 29(5), 747−759, https://doi.org/10.1002/joc.1749.
Kobayashi, C., and T. Iwasaki, 2016: Brewer-Dobson circulation diagnosed from JRA-55. J. Geophys. Res.: Atmos., 121(4), 1493−1510, https://doi.org/10.1002/2015JD023476.
Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191, https://doi.org/10.1007/s10584-011-0155-0.
Lamarque, J. F., and Coauthors, 2010: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017−7039, https://doi.org/10.5194/acp-10-7017-2010.
Lau, W. K. M., and K. M. Kim, 2017: Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pacific Journal of Atmospheric Sciences, 53(2), 181−194, https://doi.org/10.1007/s13143-017-0033-4.
Lau, W. K. M., K. M. Kim, and L. R. Leung, 2017: Changing circulation structure and precipitation characteristics in Asian monsoon regions: Greenhouse warming vs. aerosol effects. Geoscience Letters, 4(1), 28, https://doi.org/10.1186/s40562-017-0094-3.
Lesk, C., P. Rowhani, and N. Ramankutty, 2016: Influence of extreme weather disasters on global crop production. Nature, 529, 84−87, https://doi.org/10.1038/nature16467.
Li, Z., L. J. Cao, Y. N. Zhu, and Z. W. Yan, 2016: Comparison of Two Homogenized Datasets of Daily Maximum/Mean/Minimum Temperature in China during 1960−2013. Journal of Meteorological Research, 30(1), 53−66, https://doi.org/10.1007/s13351-016-5054-x.
Lin, Z. X., B. W. Dong, and Z. P. Wen, 2020: The effects of anthropogenic greenhouse gases and aerosols on the inter-decadal change of the South China Sea summer monsoon in the late twentieth century. Climate Dyn., 54, 3339−3354, https://doi.org/10.1007/s00382-020-05175-9.
Liu, W. B., F. B. Sun, Y. Feng, C. Li, J. Chen, Y.-F. Sang, and Q. Zhang, 2021: Increasing population exposure to global warm-season concurrent dry and hot extremes under different warming levels. Environmental Research Letters, 16(9), 094002, https://doi.org/10.1088/1748-9326/ac188f.
Liu, Z. C., and W. Zhou, 2021: The 2019 autumn hot drought over the middle-lower reaches of the Yangtze River in China: Early propagation, process evolution, and concurrence. J. Geophys. Res.: Atmos., 126(15), e2020JD033742, https://doi.org/10.1029/2020JD033742.
Luo, F. F., B. W. Dong, F. X. Tian, and S. L. Li, 2019: Anthropogenically forced decadal change of South Asian summer monsoon across the mid-1990s. J. Geophys. Res.: Atmos., 124(2), 806−824, https://doi.org/10.1029/2018JD029195.
Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42(8), 2823−2829, https://doi.org/10.1002/2015GL064018.
Otkin, J. A., M. Shafer, M. Svoboda, B. Wardlow, M. C. Anderson, C. Hain, and J. Basara, 2015: Facilitating the use of drought early warning information through interactions with agricultural stakeholders. Bull. Am. Meteor. Soc., 96(7), 1073−1078, https://doi.org/10.1175/BAMS-D-14-00219.1.
Peatman, S. C., and N. P. Klingaman, 2018: The Indian summer monsoon in MetUM-GOML2.0: Effects of air–sea coupling and resolution. Geoscientific Model Development, 11(11), 4693−4709, https://doi.org/10.5194/gmd-11-4693-2018.
Qian, C., and T. J. Zhou, 2014: Multidecadal variability of North China aridity and its relationship to PDO during 1900-2010. J. Climate, 27, 1210−1222, https://doi.org/10.1175/JCLI-D-13-00235.1.
Qian, C. C., J. Y. Yu, and G. Chen, 2014: Decadal summer drought frequency in China: The increasing influence of the Atlantic multi-decadal oscillation. Environmental Research Letters, 9, 124004, https://doi.org/10.1088/1748-9326/9/12/124004.
Shi, Z. T., G. S. Jia, Y. Y. Zhou, X. Y. Xu, and Y. Jiang, 2021: Amplified intensity and duration of heatwaves by concurrent droughts in China. Atmospheric Research, 261, 105743, https://doi.org/10.1016/j.atmosres.2021.105743.
Shim, S., J. Kim, S. S. Yum, H. Lee, K.-O. Boo, and Y.-H. Byun, 2019: Effects of anthropogenic and natural forcings on the summer temperature variations in East Asia during the 20th Century. Atmosphere, 10, 690, https://doi.org/10.3390/atmos10110690.
Song, F. F., T. J. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596−603, https://doi.org/10.1002/2013GL058705.
Su, Q., and B. W. Dong, 2019: Recent decadal changes in heat waves over China: Drivers and mechanisms. J. Climate, 32(14), 4215−4234, https://doi.org/10.1175/JCLI-D-18-0479.1.
Svoboda, M., and Coauthors, 2002: The drought monitor. Bull. Amer. Meteor. Soc., 83, 1181−1190, https://doi.org/10.1175/1520-0477-83.8.1181.
Tian, F. X., B. W. Dong, J. Robson, and R. Sutton, 2018: Forced decadal changes in the East Asian summer monsoon: The roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 51, 3699−3715, https://doi.org/10.1007/s00382-018-4105-7.
Tian, F. X., N. P. Klingaman, and B. W. Dong, 2021: The driving processes of concurrent hot and dry extreme events in China. J. Climate, 34(5), 1809−1824, https://doi.org/10.1175/JCLI-D-19-0760.1.
Wallander, S., M. Aillery, D. Hellerstein, and M. S. Hand, 2013: The role of conservation programs in drought risk adaptation. Economic Research Rep. No. (ERR-148), 75 pp.
Wang, C. Z., L. J. Han, A. H. Guo, X. L. Zhao, and H. Yan, 2020: Impact of meteorological conditions on agricultural production in autumn of 2019. Chinese Journal of Agrometeorology, 41(1), 61−64, https://doi.org/10.3969/j.issn.1000-6362.2020.01.007. (in Chinese)
Wang, L. Y., and X. Yuan, 2018: Two types of flash drought and their connections with seasonal drought. Adv. Atmos. Sci., 35(12), 1478−1490, https://doi.org/10.1007/s00376-018-8047-0.
Wang, L. Y., X. Yuan, Z. H. Xie, P. L. Wu, and Y. H. Li, 2016: Increasing flash droughts over China during the recent global warming hiatus. Scientific Reports, 6, 30571, https://doi.org/10.1038/srep30571.
Wu, X. Y., Z. C. Hao, Y. Zhang, X. Zhang, and F. H. Hao, 2022: Anthropogenic influence on compound dry and hot events in China based on Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 42(8), 4379−4390, https://doi.org/10.1002/joc.7473.
Wu, X. Y., Z. C. Hao, Q. H. Tang, V. P. Singh, X. Zhang, and F. H. Hao, 2021: Projected increase in compound dry and hot events over global land areas. International Journal of Climatology, 41(1), 393−403, https://doi.org/10.1002/joc.6626.
Xu, L., and Coauthors, 2018: Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau. Plateau Meteorology, 37(3), 626−641, https://doi.org/10.7522/j.issn.1000-0534.2017.00060. (in Chinese with English abstract
Yu, R., and P. M. Zhai, 2020: Changes in compound drought and hot extreme events in summer over populated eastern China. Weather and Climate Extremes, 30, 100295, https://doi.org/10.1016/j.wace.2020.100295.
Yuan, X., Z. G. Ma, M. Pan, and C. X. Shi, 2015: Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett., 42, 4394−4401, https://doi.org/10.1002/2015GL064125.
Yuan, X., L. Y. Wang, P. L. Wu, P. Ji, J. Sheffield, and M. Zhang, 2019: Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 10, 4661, https://doi.org/10.1038/s41467-019-12692-7.
Zhang, G. W., G. Zeng, C. Li, and X. Y. Yang, 2020: Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Climate Dyn., 54, 3003−3020, https://doi.org/10.1007/s00382-020-05155-z.
Zhang, M., and X. Yuan, 2020: Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrology and Earth System Sciences, 24(11), 5579−5593, https://doi.org/10.5194/hess-24-5579-2020.
Zhang, M., X. Yuan, J. A. Otkin, and P. Ji, 2022: Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environmental Research Letters, 17(5), 054041, https://doi.org/10.1088/1748-9326/ac69fb.
Zhang, Y. Q., Q. L. You, G. X. Mao, C. C. Chen, and Z. W. Ye, 2019: Short-term concurrent drought and heatwave frequency with 1.5 and 2.0°C global warming in humid subtropical basins: A case study in the Gan River Basin, China. Climate Dyn., 52(7−8), 4621−4641, https://doi.org/10.1007/s00382-018-4398-6.