Bao, X. W., and Coauthors, 2015: Diagnostics for an extreme rain event near Shanghai during the landfall of Typhoon Fitow (2013). Mon. Wea. Rev., 143(9), 3377−3405, https://doi.org/10.1175/MWR-D-14-00241.1.
Bluestein, H. B., 1992: Synoptic-Dynamic Meteorology in Midlatitudes: Volume 1, Principles of Kinematics and Dynamics. Oxford University Press, 448 pp.
Bosart, L. F., and F. H. Carr, 1978: A case study of excessive rainfall centered around Wellsville, New York, 20−21 June 1972. Mon. Wea. Rev., 106(3), 348−362, https://doi.org/10.1175/1520-0493(1978)106<0348:ACSOER>2.0.CO;2.
Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123(11), 3268−3291, https://doi.org/10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.
Bosart, L. F., J. M. Cordeira, T. J. Galarneau, B. J. Moore, H. M. Archambault, 2012: An analysis of multiple predecessor rain events ahead of Tropical Cyclones Ike and Lowell: 10–15 September 2008. Mon Wea Rev, 140(4), 1081−1107, https://doi.org/10.1175/MWR-D-11-00163.1.
Byun, K. Y., and T. Y. Lee, 2012: Remote effects of tropical cyclones on heavy rainfall over the Korean peninsula-statistical and composite analysis. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 14983, https://doi.org/10.3402/tellusa.v64i0.14983.
Chang, C. P., L. Yi, and G. T. J. Chen, 2000: A numerical simulation of vortex development during the 1992 East Asian summer monsoon onset using the Navy’s regional model. Mon. Wea. Rev., 128(6), 1604−1631, https://doi.org/10.1175/1520-0493(2000)128<1604:ANSOVD>2.0.CO;2.
Chen, L. S., 2007: Study and forecast on Landfall tropical cyclone heavy rainfall. Proc. 14th Proseminar on Tropical Cyclone, Shanghai, 3−7. Available from https://d.wanfangdata.com.cn/conference/7187768 on June, 2021. (in Chinese)
Chen, S. Q., Y. Li, Y. M. Fan, Z. Y. Xu, and F. Li, 2021: Analysis of long-distance heavy rainfall caused by Typhoon Mangosteen (2018). Chinese Journal of Atmospheric Sciences, 45(3), 573−587, https://doi.org/10.3878/j.issn.1006-9895.2009.20126. (in Chinese with English abstract
Cheng, J. B., Y. H. Zhao, R. Zhi, and G. L. Feng, 2022: Analysis of the July 2021 extreme precipitation in Henan using the novel moisture budget equation. Theor. Appl. Climatol., 149, 15−24, https://doi.org/10.1007/s00704-022-04022-7.
Chien, F. C., 2014: A numerical study on the slow translation speed of Typhoon Morakot (2009). SOLA, 10, 190−193, https://doi.org/10.2151/sola.2014-040.
CMA: China Meteorological Administration (CMA), 2011: Continuing from 2008, Research Data Archive at China Meteorological Data Service center for sharing meteorological data resources. Available from http://data.cma.cn/site/showSubject/id/101.html on June, 2021. (in Chinese)
Cong, C. H., L. S. Chen, X. T. Lei, and Y. Li, 2012: A study on the mechanism of the tropical cyclone remote precipitation. Acta Meteorologica Sinica, 70(4), 717−727, https://doi.org/10.11676/qxxb2012.058. (in Chinese with English abstract
Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York.
Cui, C. G., X. Q. Dong, B. Wang, B. K. Xi, Y. Deng, and Y. H. Ding, 2021: Integrative monsoon frontal rainfall experiment (IMFRE-I): A mid-term review. Adv. Atmos. Sci., 38(3), 357−374, https://doi.org/10.1007/s00376-020-0209-1.
Ding, Z. Y., X. H. Zhao, X. Rui, and S. Gao, 2017: Statistical analysis of summer tropical cyclone remote precipitation events in East Asia from 2000 to 2009 and numerical simulation. Journal of Tropical Meteorology, 23(1), 37−46, https://doi.org/10.16555/j.1006-8775.2017.01.004.
Draxler, R. R., and G. D. Hess, 1998: An overview of the Hysplit_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47, 295−308.
Duan, J. J., Y. Z. Qian, J. J. Jiang, Y. Wang, and Z. L. Wu, 2020: Causes of rainstorm enhancement in northeastern Zhejiang related with Typhoon Khanun landing in Guangdong Province. Journal of Arid Meteorology, 38(5), 737−746, https://doi.org/10.11755/j.issn.1006-7639(2020)-05-0737. (in Chinese with English abstract
Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I: Storm structure. Mon. Wea. Rev., 105, 1119−1135, https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2.
Galarneau, T. J., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138(8), 3272−3297, https://doi.org/10.1175/2010MWR3243.1.
Gao, S., S. Tao, and Y. Ding, 1990: The generalized E-P flux of wave-mean flow interactions. Science in China (Chemistry), 33, 704−715 (in Chinese). https://www.cnki.com.cn/Article/CJFDTotal-JBXG199006008.htm
Gao, S. Z., Z. Y. Meng, F. Q. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe Tropical Storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137(6), 1881−1897, https://doi.org/10.1175/2008MWR2669.1.
Geng, B., H. Yamada, K. K. Reddy, H. Uyeda, and Y. Fujiyoshi, 2004: An observational study of the development of a rainband on a Meiyu front causing heavy rainfall in the downstream region of the Yangtze River. J. Meteor. Soc. Japan, 82(4), 1095−1115, https://doi.org/10.2151/jmsj.2004.1095.
Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129(10), 2570−2584, https://doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.
He, B., M. Y. Lou, H. J. Li, X. H. Fan, C. L. Lu, and S. X. Pan, 2020: Research on uncertainty of ensemble forecasts of the far distance torrential rainfall by Typhoon Goni (2015). Meteorological Monthly, 46(1), 15−28, https://doi.org/10.7519/j.issn.1000-0526.2020.01.002. (in Chinese with English abstract
Herrera, R. G., D. G. Puyol, E. H. MartÍn, L. G. Presa, and P. R. Rodríguez, 2001: Influence of the North Atlantic oscillation on the Canary Islands precipitation. J. Climate, 14(19), 3889−3903, https://doi.org/10.1175/1520-0442(2001)014<3889:IOTNAO>2.0.CO;2.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877−946, https://doi.org/10.1002/qj.49711147002.
Huang, C. Y., C. S. Wong, and T. C. Yeh, 2011: Extreme rainfall mechanisms exhibited by Typhoon Morakot (2009). Terrestrial, Atmospheric and Oceanic Sciences, 22(6), 613−632, https://doi.org/10.3319/tao.2011.07.01.01(tm.
Huang, H. L., M. J. Yang, and C. H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71(1), 112−129, https://doi.org/10.1175/JAS-D-13-053.1.
Huang, S. C., Y. L. Xie, Y. H. Yan, and P. B. Yu, 2021: Study of high water level during Typhoon In-Fa in the sea area of Zhoushan island. Hydro-Science and Engineering(6), 1−8, https://doi.org/10.12170/20210915002. (in Chinese with English abstract
JMA: Japan Meteorological Agency, 2014: RSMC (Regional Specialized Meteorological Center) Tokyo-Typhoon Center (2014), issued tropical cyclone information in Asia and the Western North Pacific region, operated by the Japan Meteorological Agency within the framework of the World Weather Watch (WWW) Programme of the World Meteorological Organization (WMO). Available from https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487−503,
Knippertz, P., 2004: A simple identification scheme for upper-level troughs and its application to winter precipitation variability in northwest Africa. J. Climate, 17(6), 1411−1418, https://doi.org/10.1175/1520-0442(2004)017<1411:ASISFU>2.0.CO;2.
Kueh, M. T., C. Y. Huang, S. Y. Chen, S. H. Chen, and C. J. Wang, 2009: Impact of GPS radio occultation refractivity soundings on a simulation of Typhoon Bilis (2006) upon landfall. Terrestrial, Atmospheric and Oceanic Sciences, 20(1), 115−131, https://doi.org/10.3319/TAO.2008.01.21.03(F3C.
Lee, D. K., and S. J. Choi, 2010: Observation and numerical prediction of torrential rainfall over Korea caused by Typhoon Rusa (2002). J. Geophys. Res.: Atmos., 115(D12), D12105, https://doi.org/10.1029/2009JD012581.
Liu, J., J. Xia, D. She, L. Li, and L. Zou, 2019: Evaluation of Six Satellite-based Precipitation Products and Their Ability for Capturing Characteristics of Extreme Precipitation Events over a Climate Transition Area in China. Remote Sensing, 11(12), 1477, https://doi.org/10.3390/rs11121477.
Liu, B. Q., G. X. Chen, W. X. Zeng, L. Q. Bai, and H. L. Qin, 2022a: Diurnal variations of southerly monsoon surge and their impacts on East Asian summer rainfall. J. Climate, 35(1), 159−177, https://doi.org/10.1175/JCLI-D-21-0372.1.
Liu, Q., H. Q. Xu, and J. Wang, 2022b: Assessing tropical cyclone compound flood risk using hydrodynamic modelling: A case study in Haikou City, China. Natural Hazards and Earth System Sciences, 22(2), 665−675, https://doi.org/10.5194/nhess-22-665-2022.
Lu, X. Q., H. Yu, M. Ying, B. K. Zhao, S. Zhang, L. M. Lin, L. N. Bai, and R. J. Wan, 2021: Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38(4), 690−699, https://doi.org/10.1007/s00376-020-0211-7.
Luo, L. J., 2018: Study on the mechanism of a typhoon rainstorm process. M.S. thesis, School of Atmospheric Sciences, Nanjing University of Information Science & Technology. (in Chinese with English abstract)
McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132−1151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.
Moore, B. J., L. F. Bosart, D. Keyser, and M. L. Jurewicz, 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic Basin tropical cyclones. Mon. Wea. Rev., 141(3), 1022−1047, https://doi.org/10.1175/MWR-D-12-00178.1.
Nava, O. A., 2016: Influence of cloud-radiative processes on predecessor rain events. PhD dissertation, University of California.
Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer northern hemisphere. J. Meteor. Soc. Japan. Ser. II, 62, 880−894, https://doi.org/10.2151/jmsj1965.62.6_880.
Palmen, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, 606 pp.
Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ.,, 11(6), 1−27. https://urn.nb.no/URN:NBN:no-nb_digibok_2018020248114. Petterssen, S., 1956: Weather Analysis and Forecasting. Vol. 1. 2nd ed. McGraw-Hill, 428 pp.
Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 2393−2398, https://doi.org/10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2.
Pierce, C. H., 1939: The meteorological history of the New England hurricane of Sept. 21, 1938. Mon. Wea. Rev., 67(8), 237−285, https://doi.org/10.1175/1520-0493(1939)67<237:TMHOTN>2.0.CO;2.
Schumacher, R. S., T. J. Galarneau, and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139(2), 650−667, https://doi.org/10.1175/2010MWR3453.1.
Shen, Y., Y. Pan, J. J. Yu, P. Zhao, and Z. J. Zhou, 2013: Quality assessment of hourly merged precipitation product over China. Transactions of Atmospheric Sciences, 36(1), 37−46, https://doi.org/10.3969/j.issn.1674-7097.2013.01.005. (in Chinese with English abstract
Sun, R., H. Yuan, X. Liu, X. Jiang, 2016: Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China. J. Hydrol., 536, 302−319, https://doi.org/10.1016/j.jhydrol.2016.02.054.
Tao, S. Y., 1980: Heavy Rainfall in China. Science Press, 130−131. (in Chinese). https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B7F3283B6765943A8907AB141430F0E31000.
Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107(6), 682−703,
Van Nguyen, H., and Y. L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139(5), 1463−1491, https://doi.org/10.1175/2011MWR3505.1.
Wang, D. H., X. F. Li, and W. K. Tao, 2010: Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006). Atmospheric Research, 98(2−4), 512−525, https://doi.org/10.1016/j.atmosres.2010.08.020.
Wang, D. H., X. F. Li, W. K. Tao, Y. Liu, and H. G. Zhou, 2009a: Torrential rainfall processes associated with a landfall of severe tropical storm Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmospheric Research, 91(1), 94−104, https://doi.org/10.1016/j.atmosres.2008.07.005.
Wang, D. H., X. F. Li, W. K. Tao, and Y. Wang, 2009b: Effects of vertical wind shear on convective development during a landfall of severe tropical storm Bilis (2006). Atmospheric Research, 94(2), 270−275, https://doi.org/10.1016/j.atmosres.2009.06.004.
Wang, Y., Y. Wang, H. Fudeyasu, 2009c: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Monthly Weather Review, 137(11), 3699−3716, https://doi.org/10.1175/2009MWR2933.1.
Xie, P. P., R. Joyce, and S. Wu, 2013: A 15-year high-resolution gauge-satellite merged analysis of precipitation. Preprints, 27th Conf. on Hydrology, Austin, TX, Amer. Meteor. Soc..
Xie, P. P., R. Joyce, S. R. Wu, S. H. Yoo, Y. Yarosh, F. Y. Sun, and R. Lin, 2017: Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. Journal of Hydrometeorology, 18(6), 1617−1641, https://doi.org/10.1175/JHM-D-16-0168.1.
Xiong, Z., S. Y. Wang, Z. M. Zeng, and C. B. Fu, 2003: Analysis of simulated heavy rain over the Yangtze River valley during 11–30 June 1998 using RIEMS. Adv. Atmos. Sci., 20(5), 815−824, https://doi.org/10.1007/bf02915407.
Xu, H. X., 2015: A numerical study on impact of Taiwan Island surface heat flux on super Typhoon Haitang (2005). Advances in Meteorology, 2015, 710348, https://doi.org/10.1155/2015/710348.
Xu, H. Y., G. Q. Zhai, and X. F. Li, 2017: Precipitation efficiency and water budget of Typhoon Fitow (2013): A particle trajectory study. Journal of Hydrometeorology, 18(9), 2331−2354, https://doi.org/10.1175/JHM-D-16-0273.1.
Xu, H. Y., D. R. Zhang, and X. F. Li, 2021: The impacts of microphysics and terminal velocities of graupel/hail on the rainfall of Typhoon Fitow (2013) as seen from the WRF model simulations with several microphysics schemes. J. Geophys. Res.: Atmos., 126, e2020JD033940, https://doi.org/10.1029/2020JD033940.
Xu, H. X., Y. H. Duan, and X. D. Xu, 2022: Indirect effects of binary typhoons on an extreme rainfall event in Henan province, China from 19 to 21 July 2021: 1. Ensemble-based analysis. J. Geophys. Res.: Atmos., 127, e2021JD036265, https://doi.org/10.1029/2021JD036265.
Yang, S., K. Deng, M. Ting, and C. Hu, 2015: Advances in research on atmospheric energy propagation and the interactions between different latitudes. Journal of Meteorological Research, 29(6), 859−883, https://doi.org/10.1007/s13351-015-5088-5.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yin, J. F., H. D. Gu, X. D. Liang, M. Yu, J. S. Sun, Y. X. Xie, F. Li, and C. Wu, 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. Journal of Meteorological Research, 36, 6−25, https://doi.org/10.1007/s13351-022-1166-7.
Yuan, J. P., D. Zhao, R. W. Yang, and H. F. Yang, 2018: Predecessor rain events over China’s low-latitude highlands associated with Bay of Bengal tropical cyclones. Climate Dyn., 50(3−4), 825−843, https://doi.org/10.1007/s00382-017-3643-8.
Zhang, Q. H., K. H. Lau, H. Q. Wang, and S. J. Chen, 2000: Numerical simulation on mesoscale convective system along Mei-Yu front in Southern China. Chinese Science Bulletin, 45(22), 2093−2096, https://doi.org/10.1007/BF03183534.
Zhang, S. L., S. Y. Tao, Q. Y. Zhang, and J. Wei, 2002: Large and meso-α scale characteristics of intense rainfall in the mid - and lower reaches of the Yangtze River. Chinese Science Bulletin, 47(9), 779−786, https://doi.org/10.1360/02tb9176.
Zhao, Y., X. D. Xu, B. Chen, and Y. J. Wang, 2016: The upstream “strong signals” of the water vapor transport over the Tibetan Plateau during a heavy rainfall event in the Yangtze River Basin. Adv. Atmos. Sci., 33(12), 1343−1350, https://doi.org/10.1007/s00376-016-6118-7.
Zhao, P., J. Sun, and X. J. Zhou, 2003: Mechanism of formation of low level jets in the South China Sea during spring and summer of 1998. Chinese Science Bulletin, 48(12), 1265−1270, https://doi.org/10.1007/BF03183949.
Zhao, P., R. H. Zhang, J. P. Liu, X. J. Zhou, and J. H. He, 2007: Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall. Climate Dyn., 28(7−8), 797−811, https://doi.org/10.1007/s00382-006-0212-y.