Abarbanel, H. D. I., P. J. Rozdeba, and S. Shirman, 2018: Machine learning: Deepest learning as statistical data assimilation problems. Neural Computation, 30(8), 2025−2055, https://doi.org/10.1162/neco_a_01094.
Arcucci, R., J. C. Zhu, S. Hu, and Y.-K. Guo, 2021: Deep data assimilation: Integrating deep learning with data assimilation. Applied Sciences, 11(3), 1114, https://doi.org/10.3390/app11031114.
Ayzel, G., M. Heistermann, and T. Winterrath, 2019: Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1). Geoscientific Model Development, 12(4), 1387−1402, https://doi.org/10.5194/gmd-12-1387-2019.
Beucler, T., I. Ebert-Uphoff, S. Rasp, M. Pritchard, and P. Gentine, 2021: Machine learning for clouds and climate (invited chapter for the AGU geophysical monograph series "clouds and climate"). Earth and Space Science Open Archive,
Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteorol. Atmos. Phys., 59, 33−64, https://doi.org/10.1007/BF01032000.
Crawshaw, M., 2020: Multi-task learning with deep neural networks: A survey. arXiv preprint arXiv:2009.09796.
Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113(D16), D16210, https://doi.org/10.1029/2007JD009598.
Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10(6), 785−797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.
Fierro, A. O., E. R. Mansell, D. R. MacGorman, and C. L. Ziegler, 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141(7), 2390−2415, https://doi.org/10.1175/MWR-D-12-00278.1.
Franch, G., A. Nardelli, C. Zarbo, V. Maggio, G. Jurman, and C. Furlanello, 2016: Deep learning for rain and lightning nowcasting. Proc. NIPS 2016 Workshop on ML for Spatiotemporal Forecasting, Barcelona, Zenodo, https://doi.org/10.5281/zenodo.3594325.
Geer, A. J., 2021: Learning earth system models from observations: Machine learning or data assimilation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194), 20200089, https://doi.org/10.1098/rsta.2020.0089.
Gentine, P., M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis, 2018: Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett., 45(11), 5742−5751, https://doi.org/10.1029/2018GL078202.
Han, L., J. Z. Sun, and W. Zhang, 2020: Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data. IEEE Trans. Geosci. Remote Sens., 58(2), 1487−1495, https://doi.org/10.1109/TGRS.2019.2948070.
Han, L., M. X. Chen, K. K. Chen, H. N. Chen, Y. B. Zhang, B. Lu, L. Y. Song, and R. Qin, 2021: A deep learning method for bias correction of ECMWF 24–240 h forecasts. Adv. Atmos. Sci., 38(9), 1444−1459, https://doi.org/10.1007/s00376-021-0215-y.
Houze, R. A. Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Quart. J. Roy. Meteor. Soc., 133(627), 1389−1411, https://doi.org/10.1002/qj.106.
Ioffe, S., and C. Szegedy, 2015: Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proc. 32nd International Conf. on Machine Learning, Lille, France, JMLR.org, 448−456.
Katsanos, D. K., K. Lagouvardos, V. Kotroni, and A. A. Argiriou, 2007: The relationship of lightning activity with microwave brightness temperatures and spaceborne radar reflectivity profiles in the central and eastern mediterranean. J. Appl. Meteor. Climatol., 46(11), 1901−1912, https://doi.org/10.1175/2007JAMC1454.1.
Katuzienski, D. O., 2019: Comparing dual-polarization radar lightning forecast methods across southwest Utah. M.S. thesis, Dept. of Engineering Physics, Air Force Institute of Technology.
Krasnopolsky, V. M., and Y. Lin, 2012: A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US. Advances in Meteorology, 2012, 649450, https://doi.org/10.1155/2012/649450.
LeCun, Y., Y., Bengio, and G. Hinton, 2015: Deep learning. Nature, 521(7553), 436−444, https://doi.org/10.1038/nature14539.
Li, H. C., C. Yu, J. J. Xia, Y. C. Wang, J. Zhu, and P. W. Zhang, 2019: A model output machine learning method for grid temperature forecasts in the Beijing area. Adv. Atmos. Sci., 36(10), 1156−1170, https://doi.org/10.1007/s00376-019-9023-z.
Liu, C., S. Yang, D. Di, Y. J. Yang, C. Zhou, X. Q. Hu, and B.-J. Sohn, 2021: A machine learning-based cloud detection algorithm for the Himawari-8 spectral image. Adv. Atmos. Sci., in press,
Liu, S. K., E. Johns, and A. J. Davison, 2019: End-to-end multi-task learning with attention. Proc. 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, USA, IEEE, 1871−1880,
Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136(12), 4899−4914, https://doi.org/10.1175/2008MWR2352.1.
Meng, Q., W. Yao, and L. T. Xu, 2019: Development of lightning nowcasting and warning technique and its application. Advanceds in Meteorology, 2019, 2405936, https://doi.org/10.1155/2019/2405936.
Mostajabi, A., D. L. Finney, M. Rubinstein, and F. Rachidi, 2019: Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. npj Climate and Atmospheric Science, 2(1), 41, https://doi.org/10.1038/s41612-019-0098-0.
Müller, R., S. Haussler, and M. Jerg, 2018: The role of NWP filter for the satellite based detection of cumulonimbus clouds. Remote Sensing, 10(3), 386, https://doi.org/10.3390/rs10030386.
Pal, A., S. Mahajan, and M. R. Norman, 2019: Using deep neural networks as cost-effective surrogate models for super-parameterized E3SM radiative transfer. Geophys. Res. Lett., 46(11), 6069−6079, https://doi.org/10.1029/2018GL081646.
Pan, X., Y. H. Lu, K. Zhao, H. Huang, M. J. Wang, and H. N. Chen, 2021: Improving nowcasting of convective development by incorporating polarimetric radar variables into a deep-learning model. Geophys. Res. Lett., 48, e2021GL095302, https://doi.org/10.1029/2021GL095302.
Parisotto, E., L. J. Ba, and R. Salakhutdinov, 2016: Actor-mimic: Deep multitask and transfer reinforcement learning. Proc. 4th International Conf. on Learning Representations, San Juan, Puerto Rico.
Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124(4), 602−620, https://doi.org/10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.
Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146(11), 3885−3900, https://doi.org/10.1175/MWR-D-18-0187.1.
Rasp, S., and N. Thuerey, 2021: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for WeatherBench. Journal of Advanceds in Modeling Earth Systems, 13(2), e2020MS002405, https://doi.org/10.1029/2020MS002405.
Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences of the United States of America, 115(39), 9684−9689, https://doi.org/10.1073/pnas.1810286115.
Rasp, S., P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, 2020: WeatherBench: A benchmark data set for data-driven weather forecasting. Journal of Advanceds in Modeling Earth Systems, 12(11), e2020MS002203, https://doi.org/10.1029/2020MS002203.
Ravuri, S., and Coauthors, 2021: Skilful precipitation nowcasting using deep generative models of radar. Nature, 597, 672−677, https://doi.org/10.1038/s41586-021-03854-z.
Ronneberger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolutional networks for biomedical image segmentation. Proc. 18th International Conf. on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, Springer, 234−241,
Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600.
Seifert, A., and S. Rasp, 2020: Potential and limitations of machine learning for modeling warm‐rain cloud microphysical processes. Journal of Advanceds in Modeling Earth Systems, 12(12), e2020MS002301, https://doi.org/10.1029/2020MS002301.
Shi, X. J., Z. R. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proc. 28th International Conf. on Neural Information Processing Systems, Montreal, Canada, MIT Press, 802−810.
Shrestha, Y., Y. Zhang, R. Doviak, and P. W. Chan, 2021: Lightning flash rate nowcasting based on polarimetric radar data and machine learning. Int. J. Remote Sens., 42(17), 6762−6780, https://doi.org/10.1080/01431161.2021.1933243.
Sønderby, C. K., and Coauthors, 2020: MetNet: A neural weather model for precipitation forecasting. arXiv preprint arXiv:2003.12140.
Sun, J. Z., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: recent progress and challenges. Bull. Amer. Meteor. Soc., 95(3), 409−426, https://doi.org/10.1175/BAMS-D-11-00263.1.
Tippett, M. K., and W. J. Koshak, 2018: A baseline for the predictability of U.S. cloud-to-ground lightning. Geophys. Res. Lett., 45(9), 10 719−10 728,
Veillette, M., S. Samsi, and C. J. Mattioli, 2020: SEVIR: A storm event imagery dataset for deep learning applications in radar and satellite meteorology. Proc. 34th Conf. on Neural Information Processing Systems, Vancouver, Canada.
Wang, Y. B., M. S. Long, J. M. Wang, Z. F. Gao, and P. S. Yu, 2017: PredRNN: Recurrent neural networks for predictive learning using spatiotemporal lstms. Proc. 31st International Conf. on Neural Information Processing Systems, Long Beach, California, Curran Associates Inc., 879−888.
Wu, H. X., Z. Y. Yao, J. M. Wang, and M. S. Long, 2021: MotionRNN: A flexible model for video prediction with spacetime-varying motions. Proc. 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Nashville, TN, USA, IEEE, 15 435−15 444,
Yao, Y. Q., X. D. Yu, Y. J. Zhang, Z. J. Zhou, W. S. Xie, Y. Y. Lu, J. L. Yu, and L. X. Wei, 2015: Climate analysis of tornadoes in China. Journal of Meteorological Research, 29(3), 359−369, https://doi.org/10.1007/s13351-015-4983-0.
Yu, T. H., S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, 2020: Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782.
Zhang, Y., and Q. Yang, 2018: An overview of multi-task learning. National Science Review, 5(1), 30−43, https://doi.org/10.1093/nsr/nwx105.
Zhou, K. H., Y. G. Zheng, W. S. Dong, and T. B. Wang, 2020: A deep learning network for cloud-to-ground lightning nowcasting with multisource data. J. Atmos. Oceanic Technol., 37(5), 927−942, https://doi.org/10.1175/JTECH-D-19-0146.1.
Zhuo, J.-Y., and Z.-M. Tan, 2021: Physics-augmented deep learning to improve tropical cyclone intensity and size estimation from satellite imagery. Mon. Wea. Rev., 149(7), 2097−2113, https://doi.org/10.1175/MWR-D-20-0333.1.
Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability. Mon. Wea. Rev., 122(8), 1751−1759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.