Bouttes, N., and J. M. Gregory, 2014: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environmental Research Letters, 9, 034004, https://doi.org/10.1088/1748-9326/9/3/034004.
Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122−2143, https://doi.org/10.1175/JCLI3761.1.
Dai, Y., and Q. C. Zeng, 1997: A land surface model (IAP94) for climate studies Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433−460, https://doi.org/10.1007/s00376-997-0063-4.
Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013−1024, https://doi.org/10.1175/BAMS-84-8-1013.
Dai, Y. J., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281−2299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.
Dong, X., and Coauthors, 2020: CAS-ESM2.0 model datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1). Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0150-3.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571−591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.
Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, https://doi.org/10.1029/2005GL023209.
Gregory, J. M., and Coauthors, 2016: The flux-anomaly-forced model intercomparison project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing. Geoscientific Model Development, 9(11), 3993−4017, https://doi.org/10.5194/gmd-9-3993-2016.
Hunke, E. C., and J. K. Dukowicz, 1997: An elastic−viscous−plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849−1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.
IPCC, 2013: Sea level change. Climate Change 2013-The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, https://doi.org/10.1017/CBO9781107415324.026.
Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geoscientific Model Development, 7, 2039−2064, https://doi.org/10.5194/gmd-7-2039-2014.
Jin, J. B., Q. C. Zeng, L. Wu, H. L. Liu, and M. H. Zhang, 2017: Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model. Science China Earth Sciences, 60, 491−500, https://doi.org/10.1007/s11430-016-9004-4.
Lipscomb, W. H., and E. C. Hunke, 2004: Modeling sea ice transport using incremental remapping. Mon. Wea. Rev., 132, 1341−1354, https://doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.
Lipscomb, W. H., E. C. Hunke, W. Maslowski, and J. Jakacki, 2007: Ridging, strength, and stability in high-resolution sea ice models. J. Geophys. Res., 112, C03S91, https://doi.org/10.1029/2005JC003355.
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318−329, https://doi.org/10.1007/s13351-012-0305-y.
Liu, J. P., 2010: Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model. Science China Earth Sciences, 53, 911−918, https://doi.org/10.1007/s11430-010-0051-x.
Rahmstorf, S., and A. Ganopolski, 1999: Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43, 353−367, https://doi.org/10.1023/A:1005474526406.
Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 1365−1387, https://doi.org/10.1175/JCLI3689.1.
Yin, J. J., 2012: Century to multi-century sea level rise projections from CMIP5 models. Geophys. Res. Lett., 39, L17709, https://doi.org/10.1029/2012GL052947.
Zeng, Q. C., X. H. Zhang, X. Z. Liang, C. Yuan, and S. Chen, 1989: Documentation of IAP two-level Atmospheric General Circulation Model. DOE/ER/60314-H1, TR044, 383pp.
Zeng, X. D., F. Li, and X. Song, 2014: Development of the IAP dynamic global vegetation model. Adv. Atmos. Sci., 31, 505−514, https://doi.org/10.1007/s00376-013-3155-3.
Zhang, H., and Coauthors, 2020: CAS-ESM 2: Description and climate simulation performance of the Chinese Academy of Sciences (CAS) Earth System Model (ESM) version 2. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2020MS002210.
Zhang, X. H., and Q. C. Zeng, 1988: A computational design of numerical world genera1 circulation model. Chinese Journal of Atmospheric Sciences, 12, 149−165, https://doi.org/10.3878/j.issn.1006-9895.1988.t1.13. (in Chinese)
Zhou, G. Q., and Coauthors, 2020: Earth system model: CAS-ESM. Frontiers of Data & Computing, 2(1), 38−54, https://doi.org/10.11871/jfdc.issn.2096-742X.2020.01.004. (in Chinese)
Zhou, T. J., L. W. Zou, and X. L. Chen, 2019: Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Climate Change Research, 15(5), 445−456, https://doi.org/10.12006/j.issn.1673-1719.2019.193. (in Chinese)