Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2017: Tropical-extratropical interactions associated with East Asian cold air outbreaks. Part I: Interannual variability. J. Climate, 30, 2989−3007, https://doi.org/10.1175/JCLI-D-16-0152.1.
Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2018: Strong linkage of El Ninño-Southern Oscillation to the polar cold air mass in the northern hemisphere. Geophys. Res. Lett., 45, 5643−5652, https://doi.org/10.1029/2018GL077612.
Anderson, B. G., and M. L. Bell, 2009: Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20, 205−213, https://doi.org/10.1097/EDE.0b013e318190ee08.
Bueh, C., X. Y. Fu, and Z. W. Xie, 2011a: Large-scale circulation features typical of wintertime extensive and persistent low temperature events in China. Atmos. Ocean. Sci. Lett., 4, 235−241, https://doi.org/10.1080/16742834.2011.11446935.
Bueh, C., N. Shi, and Z. W. Xie, 2011b: Large-scale circulation anomalies associated with persistent low temperature over southern China in January 2008. Atmospheric Science Letters, 12, 273−280, https://doi.org/10.1002/asl.333.
Chen, G. X., T. Iwasaki, H. L. Qin, and W. M. Sha, 2014: Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Climate, 27, 5517−5537, https://doi.org/10.1175/JCLI-D-14-00005.1.
Cheung, H. H. N., W. Zhou, S. M. Lee, and H. W. Tong, 2015: Interannual and interdecadal variability of the number of cold days in Hong Kong and their relationship with large-scale circulation. Mon. Wea. Rev., 143, 1438−1454, https://doi.org/10.1175/MWR-D-14-00335.1.
Cheung, H. N., W. Zhou, Y. P. Shao, W. Chen, H. Y. Mok, and M. C. Wu, 2013: Observational climatology and characteristics of wintertime atmospheric blocking over Ural-Siberia. Climate Dyn., 41, 63−79, https://doi.org/10.1007/s00382-012-1587-6.
Ding, Y. H., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteorol. Atmos. Phys., 44, 281−292, https://doi.org/10.1007/BF01026822.
Feng, T. C., K. Q. Zhang, H. J. Su, X. J. Wang, Z. Q. Gong, and W. Y. Zhang, 2015: Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event. Chinese Physics B, 24, 109201, https://doi.org/10.1088/1674-1056/24/10/109201.
Gao, W. L., K. Q. Duan, and S. S. Li, 2019: Spatial-temporal variations in cold surge events in northern China during the period 1960−2016. Journal of Geographical Sciences, 29, 971−983, https://doi.org/10.1007/s11442-019-1668-0.
Harada, Y., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteorol. Soc. Japan, 94, 269−302, https://doi.org/10.2151/jmsj.2016-015.
Heo, J. W., C. H. Ho, T. W. Park, W. Choi, J. H. Jeong, and J. Kim, 2018: Changes in cold surge occurrence over East Asia in the future: Role of thermal structure. Atmosphere, 9, 222, https://doi.org/10.3390/atmos9060222.
Hu, Y. C., Y. He, and W. J. Dong, 2009: Changes in temperature extremes based on a 6-hourly dataset in China from 1961-2005. Adv. Atmos. Sci., 26, 1215−1225, https://doi.org/10.1007/s00376-009-8140-5.
Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, M. Ujiie, and K. Takaya, 2014: Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 2230−2243, https://doi.org/10.1175/JAS-D-13-058.1.
Kanno, Y., T. Shoji, and T. Iwasaki, 2015a: Comparison study of the polar cold air mass between Northern and Southern Hemispheric winters based on a zonal-mean two-box model. Atmospheric Science Letters, 16, 70−76, https://doi.org/10.1002/asl2.522.
Kanno, Y., M. R. Abdillah, and T. Iwasaki, 2015b: Charge and discharge of polar cold air mass in northern hemispheric winter. Geophys. Res. Lett., 42, 7187−7193, https://doi.org/10.1002/2015GL065626.
Kanno, Y., M. R. Abdillah, and T. Iwasaki, 2016: Long-term trend of cold air mass amount below a designated potential temperature in Northern and Southern Hemispheric winters using reanalysis data sets. J. Geophys. Res., 121, 1 0138−1 0152, https://doi.org/10.1002/2015JD024635.
Kanno, Y., J. E. Walsh, and T. Iwasaki, 2017: Interannual variability of the North American cold air stream and associated synoptic circulations. J. Climate, 30, 9575−9590, https://doi.org/10.1175/JCLI-D-17-0104.1.
Kim, K. Y., S. Lee, M. K. Kim, and C. H. Cho, 2014: Long-term variability of cold surges in Korea. Asia-Pacific Journal of Atmospheric Sciences, 50, 519−529, https://doi.org/10.1007/s13143-014-0041-6.
Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Lee, T. C., H. S. Chan, E. W. L. Ginn, and M. C. Wong, 2011: Long-term trends in extreme temperatures in Hong Kong and southern China. Adv. Atmos. Sci., 28, 147−157, https://doi.org/10.1007/s00376-010-9160-x.
Lin, D. W., C. Bueh, and Z. W. Xie, 2018: Classification of wintertime large-scale tilted ridges over the Eurasian continent and their influences on surface air temperature. Atmos. Ocean. Sci. Lett., 11, 404−411, https://doi.org/10.1080/16742834.2018.1505405.
Liu, Q., G. X. Chen, and T. Iwasaki, 2019: Quantifying the impacts of cold airmass on aerosol concentrations over North China using isentropic analysis. J. Geophys. Res., 13, 7308−7326, https://doi.org/10.1029/2018JD029367.
Lu, Q. F., W. J. Zhang, P. Zhang, X. B. Wu, F. Y. Zhang, Z. Q. Liu, and M. B. Dale, 2010: Monitoring the 2008 cold surge and frozen disasters snowstorm in south China based on regional ATOVS data assimilation. Science China Earth Sciences, 53, 1216−1228, https://doi.org/10.1007/s11430-010-3040-1.
Nong, S. Y., and K. L. Lv, 1994: Influence of symmetric and asymmetric topography on the frontogenetical process of the cold front. Scientia Atmospherica Sinica, 18, 879−888, https://doi.org/10.3878/j.issn.1006-9895.1994.z1.12. (in Chinese)
Park, T. W., C. H. Ho, S. J. Jeong, Y. S. Choi, S. K. Park, and C. K. Song, 2011: Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation. J. Geophys. Res., 116, D12118, https://doi.org/10.1029/2010JD015369.
Peng, J. B., and C. Bueh, 2011: The definition and classification of extensive and persistent extreme cold events in China. Atmos. Ocean. Sci. Lett., 4, 281−286, https://doi.org/10.1080/16742834.2011.11446943.
Peng, J. B., and C. Bueh, 2012: Precursory signals of extensive and persistent extreme cold events in China. Atmos. Ocean. Sci. Lett., 5, 252−257, https://doi.org/10.1080/16742834.2012.11446999.
Qian, W. H., and X. Lin, 2004: Regional trends in recent temperature indices in China. Climate Research, 27, 119−134, https://doi.org/10.3354/cr027119.
Qian, W. H., and W. W. Zhang, 2007: Changes in cold wave events and warm winter in China during the last 46 years. Chinese Journal of Atmospheric Sciences, 31, 1266−1278, https://doi.org/10.3878/j.issn.1006-9895.2007.06.21. (in Chinese)
Shoji, T., Y. Kanno, T. Iwasaki, and K. Takaya, 2014: An isentropic analysis of the temporal evolution of East Asian cold air outbreaks. J. Climate, 27, 9337−9348, https://doi.org/10.1175/JCLI-D-14-00307.1.
Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the East Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 2557−2577, https://doi.org/10.1175/JCLI-D-14-00834.1.
Song, L., and R. G. Wu, 2017: Processes for occurrence of strong cold events over eastern China. J. Climate, 30, 9247−9266, https://doi.org/10.1175/JCLI-D-16-0857.1.
Wang, A. Q., B. D. Su, Y. J. Wang, G. J. Wang, J. L. Huang, and C. Y. Zhao, 2017a: The characteristics of extreme minimum temperature events and exposure of farmland in China. Resources Science, 39, 954−963, https://doi.org/10.18402/resci.2017.05.15. (in Chinese)
Wang, L., W. Chen, W. Zhou, and R. H. Huang, 2009: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J. Climate, 22, 600−614, https://doi.org/10.1175/2008JCLI2295.1.
Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 2361−2374, https://doi.org/10.1175/JCLI-D-13-00086.1.
Wang, L., W. Chen, W. Zhou, J. C. L. Chan, D. Barriopedro, and R. H. Huang, 2010: Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate. International Journal of Climatology, 30, 153−158, https://doi.org/10.1002/joc.1876.
Wang, X. J., Z. Q. Gong, F. M. Ren, and G. L. Feng, 2012a: Spatial-temporal characteristics of regional extreme low temperature events in China during 1960-2009. Advances in Climate Change Research, 3, 186−194, https://doi.org/10.3724/SP.J.1248.2012.00186.
Wang, Z. Y., and Y. H. Ding, 2006: Climate change of the cold wave frequency of China in the last 53 years and the possible reasons. Chinese Journal of Atmospheric Sciences, 30, 1068−1076, https://doi.org/10.3878/j.issn.1006-9895.2006.06.02. (in Chinese)
Wang, Z. Y., Y. H. Ding, Q. Zhang, and Y. F. Song, 2012b: Changing trends of daily temperature extremes with different intensities in China. Acta Meteorologica Sinica, 26, 399−409, https://doi.org/10.1007/s13351-012-0401-z.
Wang, Z. Y., S. Yang, Z. J. Ke, and X. W. Jang, 2014: Large-scale atmospheric and oceanic conditions for extensive and persistent icing events in China. J. Appl. Meteorol. Climatol., 53, 2698−2709, https://doi.org/10.1175/JAMC-D-14-0062.1.
Wang, Z. Y., S. Yang, and B. T. Zhou, 2017b: Preceding features and relationship with possible affecting factors of persistent and extensive icing events in China. Int. J. Climatol., 37, 4105−4118, https://doi.org/10.1002/joc.5026.
Wen, M., S. Yang, A. Kumar, and P. Q. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 1111−1131, https://doi.org/10.1175/2008MWR2638.1.
Xie, Z. W., and C. Bueh, 2017: Blocking features for two types of cold events in East Asia. J. Meteorol. Res., 31, 309−320, https://doi.org/10.1007/s13351-017-6076-8.
Xu, Y., X. J. Gao, F. Giorgi, B. T. Zhou, Y. Shi, J. Wu, and Y. X. Zhang, 2018: Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv. Atmos. Sci., 35, 376−388, https://doi.org/10.1007/s00376-017-6269-1.
Yamaguchi, J., Y. Kanno, G. X. Chen, and T. Iwasaki, 2019: Cold air mass analysis of the record-breaking cold surge event over East Asia in January 2016. J. Meteorol. Soc. Japan, 97, 275−293, https://doi.org/10.2151/jmsj.2019-015.
Zehnder, J. A., and P. R. Bannon, 2010: Frontogenesis over a mountain ridge. J. Atmos. Sci., 45, 628−644, https://doi.org/10.1175/1520-0469(1988)045<0628:FOAMR>2.0.CO;2.
Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979−95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 2605−2619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.
Zhang, Z. J., and W. H. Qian, 2011: Identifying regional prolonged low temperature events in China. Adv. Atmos. Sci., 28, 338−351, https://doi.org/10.1007/s00376-010-0048-6.
Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. P. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978−3991, https://doi.org/10.1175/2009MWR2952.1.
Zhuang, Y. H., J. Y. Zhang, and L. Wang, 2018: Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations. Theor. Appl. Climatol., 132, 1261−1273, https://doi.org/10.1007/s00704-017-2166-x.