Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006gl026672.
Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 11, 392−400, https://doi.org/10.1038/s41561-018-0137-1.
Boer, G. J., and Coauthors, 2016: The decadal climate prediction project (DCPP) contribution to CMIP6. Geoscientific Model Development, 9, 3751−3777, https://doi.org/10.5194/gmd-9-3751-2016.
Boer, G. J., W. J. Merryfield, and V. V. Kharin, 2018: Relationships between potential, attainable, and actual skill in a decadal prediction experiment. Climate Dyn., 52, 4813−4831,
Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively-coupled Walker circulation using the weak temperature gradient approximation. J. Climate, 15, 2907–2920,
Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res., 119, 13 043−13 066,
Cheng, J. B., Y. H. Zhao, R. Zhi, and G. L. Feng, 2022: Analysis of the July 2021 extreme precipitation in Henan using the novel moisture budget equation. Theor. Appl. Climatol., 149, 15−24, https://doi.org/10.1007/s00704-022-04022-7.
Chou, C. A., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nature Geoscience, 6, 263−267, https://doi.org/10.1038/ngeo1744.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447−462, https://doi.org/10.1002/qj.49710644905.
Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res., 118, 6704−6716, https://doi.org/10.1002/2013jc009067.
Guo, Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020a: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 37, 1057−1066, https://doi.org/10.1007/s00376-020-2004-4.
Guo, Y. Y., and Coauthors, 2020b: Simulation and improvements of oceanic circulation and sea ice by the coupled climate system model FGOALS-f3-L. Adv. Atmos. Sci., 37, 1133−1148, https://doi.org/10.1007/s00376-020-0006-x.
He, B., and Coauthors, 2020a: CAS FGOALS-f3-L model datasets for CMIP6 GMMIP tier-1 and Tier-3 experiments. Adv. Atmos. Sci., 37, 18−28, https://doi.org/10.1007/s00376-019-9085-y.
He, B., and Coauthors, 2020b: CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett., 13, 582−588, https://doi.org/10.1080/16742834.2020.1778419.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hu, S., B. Wu, T. J. Zhou, and Z. Guo, 2019: A comparison of full-field and anomaly initialization for seasonal prediction of Indian Ocean basin mode. Climate Dyn., 53, 6089−6104, https://doi.org/10.1007/s00382-019-04916-9.
Hu, S., T. J. Zhou, and B. Wu, 2020: Improved ENSO prediction skill resulting from reduced climate drift in IAP-DecPreS: A comparison of full-field and anomaly initializations. Journal of Advances in Modeling Earth Systems, 12, e2019MS001759, https://doi.org/10.1029/2019ms001759.
Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243−256,
Kawamura, R., and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 37−40, https://doi. org/10.2151/sola.2006-010.
Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009−2030, https://doi.org/10.1256/qj.05.204.
Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan Pattern. J. Climate, 23, 5085−5108, https://doi.org/10.1175/2010jcli3413.1.
Kubota, H., Y. Kosaka, and S. P. Xie, 2016: A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability. International Journal of Climatology, 36, 1575−1589, https://doi.org/10.1002/joc.4441.
Lau, K. M., and H. Weng, 2002: Recurrent Teleconnection Patterns Linking Summertime Precipitation Variability over East Asia and North America. Journal of the Meteorological Society of Japan. Ser. II, 80(6), 1309-1324,
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-Interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, https://doi.org/ 10.1029/2018MS001506.
Liang, X. D., and Coauthors, 2022: Preliminary investigation on the extreme rainfall event during July 2021 in Henan Province and its multi-scale processes. Chinese Science Bulletin, 67, 997−1011, https://doi.org/10.1360/tb-2021-0827.
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 ocean model intercomparison project. Adv. Atmos. Sci., 37, 239−249, https://doi.org/10.1007/s00376-019-9208-5.
Ling, S. N., and R. Y. Lu, 2022: Tropical cyclones over the western north pacific strengthen the East Asia—Pacific pattern during summer. Adv. Atmos. Sci., 39, 249−259, https://doi.org/10.1007/s00376-021-1171-2.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3−12, https://doi.org/10.1175/1520-0493(1987)115<0003:mtcbot>2.0.co;2.
Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18, 3928–3950,
Nie, Y. B., and J. Q. Sun, 2022: Moisture sources and transport for extreme precipitation over Henan in July 2021. Geophys. Res. Lett., 49, e2021GL097446, https://doi.org/10.1029/2021gl097446.
Nitta, T., 1987: Convective activities in the tropical western pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373−390, https://doi.org/10.2151/jmsj1965.65.3_373.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002jd002670.
Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 4651−4668, https://doi.org/10.1175/2010jcli3655.1.
Seager, R., N. Naik, and L. Vogel, 2012: Does global warming cause intensified interannual hydroclimate variability? J. Climate, 25, 3355−3372, https://doi.org/10.1175/jcli-d-11-00363.1.
Sun, Y. X., G. Chen, and B. K. Tan, 2021: Formation and maintenance mechanisms of the Pacific-Japan pattern as an intraseasonal variability mode. Climate Dyn., 57, 2971−2994, https://doi.org/10.1007/s00382-021-05851-4.
Su, H., and J. D. Neelin, 2002: Teleconnection mechanism for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59, 2694–2712,
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:Afoapi>2.0.Co;2.
Takemura, K., and H. Mukougawa, 2020: Dynamical relationship between quasi-stationary rossby wave propagation along the Asian Jet and Pacific-Japan Pattern in boreal summer. J. Meteor. Soc. Japan, 98, 169−187, https://doi.org/10.2151/jmsj.2020-010.
Tao, L., T. M. Li, Y. H. Ke, and J. W. Zhao, 2017: Causes of interannual and interdecadal variations of the summertime Pacific-Japan-like pattern over East Asia. J. Climate, 30, 8845−8864, https://doi.org/10.1175/jcli-d-15-0817.1.
Tao, S. Y., and L. X. Chen, 1987: A review of recent research of the east Asian summer monsoon in China. Monsoon Meteorology. Vol. 7, Oxford Monogr. Geol. Geophys., C.-P. Chang and T. N. Krishnamurti, Eds., Oxford Univ. Press, New York, 60–92.
Wang, J. B., Z. P. Wen, R. G. Wu, Y. Y. Guo, and Z. S. Chen, 2016: The mechanism of growth of the low-frequency East Asia–Pacific teleconnection and the triggering role of tropical intraseasonal oscillation. Climate Dyn., 46, 3965−3977, https://doi.org/10.1007/s00382-015-2815-7.
Wu, B., and T. J. Zhou, 2008: Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys. Res. Lett., 35, L13701, https://doi.org/10.1029/2008gl034584.
Wu, B., X. L. Chen, F. F. Song, Y. Sun, and T. J. Zhou, 2015: Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses. Advances in Meteorology, 2015, 904826, https://doi.org/10.1155/2015/904826.
Wu, B., T. J. Zhou, and T. M. Li, 2016: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer monsoon. J. Climate, 29, 3253−3271, https://doi.org/10.1175/jcli-d-15-0105.1.
Wu, B., T. J. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621−9635, https://doi.org/10.1175/jcli-d-16-0489.1.
Wu, B., T. J. Zhou, and F. Zheng, 2018: EnOI-IAU initialization scheme designed for decadal climate prediction system IAP-DecPreS. Journal of Advances in Modeling Earth Systems, 10, 342−356, https://doi.org/10.1002/2017ms001132.
Xiang, B. Q., B. Wang, W. D. Yu, and S. B. Xu, 2013: How can anomalous western North Pacific Subtropical High intensify in late summer. Geophys. Res. Lett., 40, 2349−2354, https://doi.org/10.1002/grl.50431.
Xu, P. Q., L. Wang, W. Chen, J. Feng, and Y. Y. Liu, 2019: Structural changes in the Pacific-Japan Pattern in the late 1990s. J. Climate, 32, 607−621, https://doi.org/10.1175/jcli-d-18-0123.1.
Yamada, K., and R. Kawamura, 2007: Dynamical link between typhoon activity and the PJ teleconnection pattern from early summer to autumn as revealed by the JRA-25 reanalysis. Sola, 3, 65−68, https://doi.org/10.2151/sola.2007-017.
Yang, W. T., F. Gao, T. H. Xu, N. Z. Wang, J. S. Tu, L. L. Jing, and Y. H. Kong, 2021: Daily flood monitoring based on spaceborne GNSS-R data: A case study on Henan, China. Remote Sensing, 13, 4561, https://doi.org/10.3390/rs13224561.
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li, 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42, 877−889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284. (in Chinese with English abstract
Zhang, S. C., and Coauthors, 2021: Using CYGNSS data to map flood inundation during the 2021 extreme precipitation in Henan Province, China. Remote Sensing, 13, 5181, https://doi.org/10.3390/rs13245181.
Zhang, S. H., Y. R. X. Chen, Y. L. Luo, B. Liu, G. Y. Ren, T. J. Zhou, C. Martinez‐villalobos, and M. Y. Chang, 2022: Revealing the circulation pattern most conducive to precipitation extremes in Henan Province of North China. Geophys. Res. Lett., 49, e2022GL098034, https://doi.org/10.1029/2022gl098034.
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1−20, https://doi.org/10.1002/2014MS000349.
Zhou, T. J., and Coauthors, 2020: Development of climate and earth system models in China: Past achievements and new CMIP6 results. J. Meteor. Res., 34, 1−19, https://doi.org/10.1007/s13351-020-9164-0.
Zhou, T. J., and Coauthors, 2022: 2021: A year of unprecedented climate extremes in eastern Asia, North America, and Europe. Adv. Atmos. Sci., 39, 1598−1607, https://doi.org/10.1007/s00376-022-2063-9.
Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 7313−7327, https://doi.org/10.1175/jcli-d-16-0137.1.
Zhu, Z. W., and T. Li, 2018: Amplified contiguous United States summer rainfall variability induced by East Asian monsoon interdecadal change. Climate Dyn., 50, 3523−3536, https://doi.org/10.1007/s00382-017-3821-8.