Andersen, T. K., and J. M. Shepherd, 2014: A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. International Journal of Climatology, 34, 391−402, https://doi.org/10.1002/joc.3693.
Anthes, R. A., 1974: The dynamics and energetics of mature tropical cyclones. Rev. Geophys., 12, 495−522, https://doi.org/10.1029/RG012i003p00495.
Ao, X. Y., C. J. Yue, X. C. Yang, L. Deng, and W. Huang, 2022: Urbanization effects on rainfall processes induced by landfalling typhoon lekima (2019) over the Shanghai metropolitan area. Journal of Hydrometeorology, 23, 1075−1093, https://doi.org/10.1175/JHM-D-21-0170.1.
Arndt, D. S., J. B. Basara, R. A. McPherson, B. G. Illston, G. D. McManus, and D. B. Demko, 2009: Observations of the overland reintensification of tropical storm Erin (2007). Bull. Amer. Meteor. Soc., 90, 1079−1094, https://doi.org/10.1175/2009BAMS2644.1.
Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal Climatology, 31, 273−288, https://doi.org/10.1002/joc.2158.
Chen, J., and D. R. Chavas, 2020: The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci., 77, 2807−2834, https://doi.org/10.1175/JAS-D-19-0320.1.
Deng, D. F., and E. A. Ritchie, 2020: Rainfall mechanisms for one of the wettest tropical cyclones on record in Australia—Oswald (2013). Mon. Wea. Rev., 148, 2503−2525, https://doi.org/10.1175/MWR-D-19-0168.1.
Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497−5509, https://doi.org/10.1175/2007JCLI1571.1.
Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 3863−3872, https://doi.org/10.1175/2008MWR2409.1.
Evans, C., R. S. Schumacher, and T. J. Galarneau, 2011: Sensitivity in the overland reintensification of tropical cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 3848−3870, https://doi.org/10.1175/2011MWR3593.1.
Fang, X. Q., Y.-H. Kuo, and A. Y. Wang, 2011: The impacts of Taiwan topography on the predictability of typhoon Morakot's record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613−633, https://doi.org/10.1175/WAF-D-10-05020.1.
Feldmann, M., K. Emanuel, L. Y. Zhu, and U. Lohmann, 2019: Estimation of Atlantic tropical cyclone rainfall frequency in the United States. J. Appl. Meteorol. Climatol., 58, 1853−1866, https://doi.org/10.1175/JAMC-D-19-0011.1.
Galarneau, T. J. Jr., and X. B. Zeng, 2020: The hurricane Harvey (2017) Texas rainstorm: Synoptic analysis and sensitivity to soil moisture. Mon. Wea. Rev., 148, 2479−2502, https://doi.org/10.1175/MWR-D-19-0308.1.
Gao, Z. B., J. S. Zhu, Y. Guo, N. Luo, Y. Fu, and T. T. Wang, 2021: Impact of land surface processes on a record-breaking rainfall event on May 06−07, 2017, in Guangzhou, China. J. Geophys. Res., 126, e2020JD032997, https://doi.org/10.1029/2020JD032997.
Gori, A., N. Lin, and D. Z. Xi, 2020: Tropical cyclone compound flood hazard assessment: From investigating drivers to quantifying extreme water levels. Earth's Future, 8, e2020EF001660, https://doi.org/10.1029/2020EF001660.
Han, J.-Y., and J.-J. Baik, 2008: A theoretical and numerical study of urban heat island–induced circulation and convection. J. Atmos. Sci., 65, 1859−1877, https://doi.org/10.1175/2007JAS2326.1.
Hlywiak, J., and D. S. Nolan, 2021: The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci., 78, 983−1000, https://doi.org/10.1175/JAS-D-20-0211.1.
Holst, C. C., C.-Y. Tam, and J. C. L. Chan, 2016: Sensitivity of urban rainfall to anthropogenic heat flux: A numerical experiment. Geophys. Res. Lett., 43, 2240−2248, https://doi.org/10.1002/2015GL067628.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in typhoon sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662−674, https://doi.org/10.1175/JAS-D-11-0114.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kimball, S. K., 2008: Structure and evolution of rainfall in numerically simulated landfalling hurricanes. Mon. Wea. Rev., 136, 3822−3847, https://doi.org/10.1175/2008MWR2304.1.
Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. J. Meteor. Soc. Japan., 82, 67−80, https://doi.org/10.2151/jmsj.82.67.
Kusaka, H., K. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329−358, https://doi.org/10.1023/A:1019207923078.
Langousis, A., and D. Veneziano, 2009: Theoretical model of rainfall in tropical cyclones for the assessment of long-term risk. J. Geophys. Res., 114, D02106, https://doi.org/10.1029/2008JD010080.
Lei, L. L., Y. J. X. Ge, Z. M. Tan, and X. W. Bao, 2020: An evaluation and improvement of tropical cyclone prediction in the western North Pacific basin from global ensemble forecasts. Science China Earth Sciences, 63, 12−26, https://doi.org/10.1007/s11430-019-9480-8.
Li, Q., J. C. Yang, and L. Yang, 2021: Impact of urban roughness representation on regional hydrometeorology: An idealized study. J. Geophys. Res., 126, e2020JD033812, https://doi.org/10.1029/2020JD033812.
Li, Y., and L. S. Chen, 2007: Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones. Acta Meteorologica Sinica, 21, 34−46.
Li, Y., and D. J. Zhao, 2022: Climatology of tropical cyclone extreme rainfall over China from 1960 to 2019. Adv. Atmos. Sci., 39, 320−332, https://doi.org/10.1007/s00376-021-1080-4.
Li, Y. B., K. K. W. Cheung, and J. C. L. Chan, 2014: Numerical study on the development of asymmetric convection and vertical wind shear during tropical cyclone landfall. Quart. J. Roy. Meteor. Soc., 140, 1866−1877, https://doi.org/10.1002/qj.2259.
Liang, X., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 1391−1413, https://doi.org/10.1175/BAMS-D-16-0178.1.
Liu, K. S., and J. C. L. Chan, 2022: Growing threat of rapidly-intensifying tropical cyclones in East Asia. Adv. Atmos. Sci., 39, 222−234, https://doi.org/10.1007/s00376-021-1126-7.
Liu, L., and Y. Q. Wang, 2020: Trends in landfalling tropical cyclone–induced precipitation over China. J. Climate, 33, 2223−2235, https://doi.org/10.1175/JCLI-D-19-0693.1.
Liu, L., J. Xu, Y. Q. Wang, and Y. H. Duan, 2019: Contribution of recycling of surface precipitation to landfalling tropical cyclone rainfall: A modeling study for typhoon utor (2013). J. Geophys. Res., 124, 870−885, https://doi.org/10.1029/2018JD029380.
Lu, P., N. Lin, K. Emanuel, D. Chavas, and J. Smith, 2018: Assessing hurricane rainfall mechanisms using a physics-based model: Hurricanes Isabel (2003) and Irene (2011). J. Atmos. Sci., 75, 2337−2358, https://doi.org/10.1175/JAS-D-17-0264.1.
Mei, W., and S.-P. Xie, 2016: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9, 753−757, https://doi.org/10.1038/ngeo2792.
Nair, U. S., and Coauthors, 2019: Influence of land cover and soil moisture based brown ocean effect on an extreme rainfall event from a Louisiana gulf coast tropical system. Scientific Reports, 9, 17136, https://doi.org/10.1038/s41598-019-53031-6.
Nie, W. S., B. F. Zaitchik, G. H. Ni, and T. Sun, 2017: Impacts of anthropogenic heat on summertime rainfall in Beijing. Journal of Hydrometeorology, 18, 693−712, https://doi.org/10.1175/JHM-D-16-0173.1.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.
Qian, Y., and Coauthors, 2022: Urbanization impact on regional climate and extreme weather: Current understanding, uncertainties, and future research directions. Adv. Atmos. Sci., 39, 819−860, https://doi.org/10.1007/s00376-021-1371-9.
Ren, C., M. Cai, X. W. Li, L. Zhang, R. Wang, Y. Xu, and E. Ng, 2019: Assessment of local climate zone classification maps of cities in China and feasible refinements. Scientific Reports, 9, 18848, https://doi.org/10.1038/s41598-019-55444-9.
Shen, W. X., I. Ginis, and R. E. Tuleya, 2002: A numerical investigation of land surface water on landfalling hurricanes. J. Atmos. Sci., 59, 789−802, https://doi.org/10.1175/1520-0469(2002)059<0789:ANIOLS>2.0.CO;2.
Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063−3075, https://doi.org/10.1002/2013JD020686.
Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250−271, https://doi.org/10.1175/MWR-D-14-00116.1.
Sun, X. Y., and Coauthors, 2021: On the localized extreme rainfall over the great bay area in South China with complex topography and strong UHI effects. Mon. Wea. Rev., 149, 2777−2801, https://doi.org/10.1175/MWR-D-21-0004.1.
Tang, X. D., Q. C. Cai, J. Fang, and Z.-M. Tan, 2019a: Land–sea contrast in the diurnal variation of precipitation from landfalling tropical cyclones. J. Geophys. Res., 124, 12 010−12 021,
Tang, X. D., Z.-M. Tan, J. Fang, E. B. Munsell, and F. Q. Zhang, 2019b: Impact of the diurnal radiation contrast on the contraction of radius of maximum wind during intensification of hurricane Edouard (2014). J. Atmos. Sci., 76, 421−432, https://doi.org/10.1175/JAS-D-18-0131.1.
Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291−304, https://doi.org/10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2.
van Oldenborgh, G. J., and Coauthors, 2017: Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2.
Wakefield, R. A., J. B. Basara, J. M. Shepherd, N. Brauer, J. C. Furtado, J. A. Santanello, and R. Edwards, 2021: The inland maintenance and reintensification of tropical storm bill (2015). Part I: Contributions of the brown ocean effect. Journal of Hydrometeorology, 22, 2675−2693, https://doi.org/10.1175/JHM-D-20-0150.1.
Wang, J., J. M. Feng, and Z. W. Yan, 2018a: Impact of extensive urbanization on summertime rainfall in the Beijing region and the role of local precipitation recycling. J. Geophys. Res., 123, 3323−3340, https://doi.org/10.1002/2017JD027725.
Wang, S.-Y. S., L. Zhao, J.-H. Yoon, P. Klotzbach, and R. R. Gillies, 2018b: Quantitative attribution of climate effects on hurricane Harvey's extreme rainfall in Texas. Environ. Res. Lett., 13, 054014, https://doi.org/10.1088/1748-9326/aabb85.
Wang, Y. Q., 2012: Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254−275, https://doi.org/10.6057/2012TCRR02.05.
Wei, N., and Y. Li, 2013: A modeling study of land surface process impacts on inland behavior of Typhoon Rananim (2004). Adv. Atmos. Sci., 30, 367−381, https://doi.org/10.1007/s00376-012-1242-5.
Wilson, P. S., and R. Toumi, 2005: A fundamental probability distribution for heavy rainfall. Geophys. Res. Lett., 32, L14812, https://doi.org/10.1029/2005GL022465.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67−80, https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.
Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with typhoon herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001−1015, https://doi.org/10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2.
Xi, D. Z., N. Lin, and J. Smith, 2020: Evaluation of a physics-based tropical cyclone rainfall model for risk assessment. Journal of Hydrometeorology, 21, 2197−2218, https://doi.org/10.1175/JHM-D-20-0035.1.
Yang, L., and coauthors, 2020: Riverine flooding and landfalling tropical cyclones over China. Earth's Future, 8, e2019EF001451, https://doi.org/10.1029/2019EF001451.
Yang, L., Q. Li, H. L. Yuan, Z. X. Niu, and L. C. Wang, 2021: Impacts of urban canopy on two convective storms with contrasting synoptic conditions over Nanjing, China. J. Geophys. Res., 126, e2020JD034509, https://doi.org/10.1029/2020JD034509.
Yin, J. F., D.-L. Zhang, Y. L. Luo, and R. Y. Ma, 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955−979, https://doi.org/10.1175/MWR-D-19-0212.1.
Ying, M., and Coauthors, 2014: An overview of the china meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yoo, J., J. A. Santanello Jr., M. Shepherd, S. Kumar, P. Lawston, and A. M. Thomas, 2020: Quantification of the land surface and brown ocean influence on tropical cyclone intensification over land. Journal of Hydrometeorology, 21, 1171−1192, https://doi.org/10.1175/JHM-D-19-0214.1.
Yu, M., S. G. Miao, and H. B. Zhang, 2018: Uncertainties in the impact of urbanization on heavy rainfall: Case study of a rainfall event in Beijing on 7 August 2015. J. Geophys. Res., 123, 6005−6021, https://doi.org/10.1029/2018JD028444.
Zhang, D.-L., 2020: Rapid urbanization and more extreme rainfall events. Sci. Bull., 65, 516−518, https://doi.org/10.1016/j.scib.2020.02.002.
Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith, 2018: Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 563, 384−388, https://doi.org/10.1038/s41586-018-0676-z.
Zhu, L. Y., S. M. Quiring, and K. A. Emanuel, 2013: Estimating tropical cyclone precipitation risk in Texas. Geophys. Res. Lett., 40, 6225−6230, https://doi.org/10.1002/2013GL058284.
Zhu, L. Y., K. Emanuel, and S. M. Quiring, 2021: Elevated risk of tropical cyclone precipitation and pluvial flood in Houston under global warming. Environ. Res. Lett., 16, 094030, https://doi.org/10.1088/1748-9326/ac1e3d.