Azad, R., and A. Sorteberg, 2017: Extreme daily precipitation in coastal western Norway and the link to atmospheric rivers. J. Geophys. Res., 122, 2080−2095, https://doi.org/10.1002/2016JD025615.
Bao, J. W., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change, 7, 128−132, https://doi.org/10.1038/nclimate3201.
Chen, H. P., and J. Q. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 2436−2444, https://doi.org/10.1002/2016GL072439.
Chen, H. P., J. Q. Sun, and H. X. Li, 2020: Increased population exposure to precipitation extremes under future warmer climates. Environmental Research Letters, 15, 034048, https://doi.org/10.1088/1748-9326/ab751f.
Chen, X. Y., X. B. Zhang, J. A. Church, C. S. Watson, M. A. King, D. Monselesan, B. Legresy, and C. Harig, 2017: The increasing rate of global mean sea-level rise during 1993-2014. Nature Climate Change, 7, 492−495, https://doi.org/10.1038/nclimate3325.
Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. No. NCAR/TN-387+STR, http://dx.doi.org/10.5065/D67W6959.
Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114, 4881−4886, https://doi.org/10.1073/pnas.1618082114.
Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O'Gorman, and N. Maher, 2016: More extreme precipitation in the world's dry and wet regions. Nature Climate Change, 6, 508−513, https://doi.org/10.1038/nclimate2941.
Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res., 118, 2098−2118, https://doi.org/10.1002/jgrd.50150.
Dong, L., L. R. Leung, J. Lu, and Y. Gao, 2019: Contributions of extreme and non-extreme precipitation to california precipitation seasonality changes under warming. Geophys. Res. Lett., 46, 13 470−13 478, https://doi.org/10.1029/2019GL084225.
Dong, S. Y., Y. Sun, and C. Li, 2020: Detection of human influence on precipitation extremes in Asia. J. Climate, 33, 5293−5304, https://doi.org/10.1175/JCLI-D-19-0371.1.
Emanuel, K. A., and M. Živkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766−1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.
Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 6, 986−991, https://doi.org/10.1038/nclimate3110.
Franzke, C., 2012: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Climate, 25, 4172−4183, https://doi.org/10.1175/JCLI-D-11-00293.1.
Gao, S. B., 2020: Dynamical downscaling of surface air temperature and precipitation using RegCM4 and WRF over China. Climate Dyn., 55, 1283−1302, https://doi.org/10.1007/s00382-020-05326-y.
Gao, X. J., Y. Shi, Z. Y. Han, M. L. Wang, J. Wu, D. F. Zhang, Y. Xu, and F. Giorgi, 2017: Performance of RegCM4 over major river basins in China. Adv. Atmos. Sci., 34, 441−455, https://doi.org/10.1007/s00376-016-6179-7.
Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7−29, https://doi.org/10.3354/cr01018.
Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764−787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.
Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR, 121 pp, https://doi.org/10.5065/D60Z716B.
Gu, H. H., Z. B. Yu, W. R. Peltier, and X. Y. Wang, 2020: Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Climate Dyn., 54, 3781−3801, https://doi.org/10.1007/s00382-020-05205-6.
Guo, J. P., and Coauthors, 2020: The response of warm-season precipitation extremes in China to global warming: An observational perspective from radiosonde measurements. Climate Dyn., 54, 3977−3989, https://doi.org/10.1007/s00382-020-05216-3.
Herold, N., A. Behrangi, and L. V. Alexander, 2017: Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res., 122, 668−681, https://doi.org/10.1002/2016JD025842.
Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454, 903−995, https://doi.org/10.1098/rspa.1998.0193.
Huang, P., S. P. Xie, K. M. Hu, G. Huang, and R. H. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nature Geoscience, 6, 357−361, https://doi.org/10.1038/ngeo1792.
IPCC, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. C. B. Field et al., Eds., Cambridge University Press, 582 pp.
Ji, F., Z. H. Wu, J. P. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nature Climate Change, 4, 462−466, https://doi.org/10.1038/nclimate2223.
Karl, T. R., and D. R. Easterling, 1999: Climate extremes: Selected review and future research directions. Climatic Change, 42, 309−325, https://doi.org/10.1023/A:1005436904097.
Kim, T., J. Y. Shin, S. Kim, and J. H. Heo, 2018: Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. J. Hydrol., 557, 726−739, https://doi.org/10.1016/j.jhydrol.2017.12.069.
King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nature Climate Change, 7, 412−416, https://doi.org/10.1038/nclimate3296.
King, A. D., N. P. Klingaman, L. V. Alexander, M. G. Donat, N. C. Jourdain, and P. Maher, 2014: Extreme rainfall variability in Australia: Patterns, drivers, and predictability. J. Climate, 27, 6035−6050, https://doi.org/10.1175/JCLI-D-13-00715.1.
Lee, S. S., J. Y. Moon, B. Wang, and H. J. Kim, 2017: Subseasonal prediction of extreme precipitation over Asia: Boreal summer intraseasonal oscillation perspective. J. Climate, 30, 2849−2865, https://doi.org/10.1175/JCLI-D-16-0206.1.
Lei, Y. B., Y. L. Zhu, B. Wang, T. D. Yao, K. Yang, X. W. Zhang, J. Q. Zhai, and N. Ma, 2019: Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Nino. Geophys. Res. Lett., 46, 5889−5898, https://doi.org/10.1029/2019GL081946.
Li, B. F., Y. N. Chen, Z. S. Chen, H. G. Xiong, and L. S. Lian, 2016a: Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmospheric Research, 167, 275−284, https://doi.org/10.1016/j.atmosres.2015.08.017.
Li, J., and B. Wang, 2018: Predictability of summer extreme precipitation days over eastern China. Climate Dyn., 51, 4543−4554, https://doi.org/10.1007/s00382-017-3848-x.
Li, W., Z. H. Jiang, J. J. Xu, and L. Li, 2016b: Extreme precipitation indices over China in CMIP5 models. Part II: Probabilistic projection. J. Climate, 29, 8989−9004, https://doi.org/10.1175/JCLI-D-16-0377.1.
Li, X., Q. L. You, G. Y. Ren, S. Y. Wang, Y. Q. Zhang, J. L. Yang, and G. F. Zheng, 2019a: Concurrent droughts and hot extremes in Northwest China from 1961 to 2017. International Journal of Climatology, 39, 2186−2196, https://doi.org/10.1002/joc.5944.
Li, Z. B., Y. Sun, T. Li, Y. H. Ding, and T. Hu, 2019b: Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5°C of Warming. Earth's Future, 7, 1391−1406, https://doi.org/10.1029/2019EF001276.
Lin, P. F., Z. B. He, J. Du, L. F. Chen, X. Zhu, and J. Li, 2017: Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China's Qilian Mountains. Scientific Reports, 7, 2245, https://doi.org/10.1038/s41598-017-02345-4.
Liu, R., S. C. Liu, R. J. Cicerone, C. J. Shiu, J. Li, J. L. Wang, and Y. H. Zhang, 2015: Trends of extreme precipitation in eastern China and their possible causes. Adv. Atmos. Sci., 32, 1027−1037, https://doi.org/10.1007/s00376-015-5002-1.
Liu, Y. H., J. M. Feng, and Z. G. Ma, 2014: An analysis of historical and future temperature fluctuations over China based on CMIP5 simulations. Adv. Atmos. Sci., 31, 457−467, https://doi.org/10.1007/s00376-013-3093-0.
Liu, Y. M., M. M. Lu, H. J. Yang, A. M. Duan, B. He, S. Yang, and G. X. Wu, 2020: Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts. National Science Review, 7, 534−552, https://doi.org/10.1093/nsr/nwaa011.
Lü, J. M., Y. Li, P. M. Zhai, and J. M. Chen, 2017: Teleconnection patterns impacting on the summer consecutive extreme rainfall in Central-Eastern China. International Journal of Climatology, 37, 3367−3380, https://doi.org/10.1002/joc.4923.
Luo, Y. L., and Coauthors, 2020: Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of New China. J. Meteor. Res., 34, 427−459, https://doi.org/10.1007/s13351-020-0006-x.
Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the community earth system model large ensemble. J. Climate, 32, 1025−1045, https://doi.org/10.1175/JCLI-D-18-0302.1.
O'Gorman, P. A., 2015: Precipitation extremes under climate change. Current Climate Change Reports, 1, 49−59, https://doi.org/10.1007/s40641-015-0009-3.
O'Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 14 773−14 777, https://doi.org/10.1073/pnas.0907610106.
Pendergrass, A. G., K. A. Reed, and B. Medeiros, 2016: The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophys. Res. Lett., 43, 11 445−11 452, https://doi.org/10.1002/2016GL071285.
Pfahl, S., P. A. O'Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change, 7, 423−427, https://doi.org/10.1038/nclimate3287.
Prein, A. F., R. M. Rasmussen, K. Ikeda, C. H. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nature Climate Change, 7, 48−52, https://doi.org/10.1038/nclimate3168.
Qin, P. H., and Z. H. Xie, 2016: Detecting changes in future precipitation extremes over eight river basins in China using RegCM4 downscaling. J. Geophys. Res., 121, 6802−6821, https://doi.org/10.1002/2016JD024776.
Qin, P. H., and Z. H. Xie, 2017: Precipitation extremes in the dry and wet regions of China and their connections with the sea surface temperature in the eastern tropical Pacific Ocean. J. Geophys. Res., 122, 6273−6283, https://doi.org/10.1002/2016JD026242.
Qu, X., G. Huang, and W. Zhou, 2014: Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theoretical and Applied Climatology, 117, 123−131, https://doi.org/10.1007/s00704-013-0995-9.
Scher, S., R. J. Haarsma, H. de Vries, S. S. Drijfhout, and A. J. van Delden, 2017: Resolution dependence of extreme precipitation and deep convection over the Gulf Stream. Journal of Advances in Modeling Earth Systems, 9, 1186−1194, https://doi.org/10.1002/2016MS000903.
Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63, 1379−1388, https://doi.org/10.1080/01621459.1968.10480934.
Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 1716−1733, https://doi.org/10.1002/jgrd.50203.
Steiner, A. L., J. S. Pal, S. A. Rauscher, J. L. Bell, N. S. Diffenbaugh, A. Boone, L. C. Sloan, and F. Giorgi, 2009: Land surface coupling in regional climate simulations of the West African monsoon. Climate Dyn., 33, 869−892, https://doi.org/10.1007/s00382-009-0543-6.
Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proceedings of the National Academy of Sciences of the United States of America, 107, 571−575, https://doi.org/10.1073/pnas.0903186107.
Sun, C., J. P. Li, and R. Q. Ding, 2016: Strengthening relationship between ENSO and western Russian summer surface temperature. Geophys. Res. Lett., 43, 843−851, https://doi.org/10.1002/2015GL067503.
Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Science Advances, 2, e1501344, https://doi.org/10.1126/sciadv.1501344.
Tan, X. Z., T. Y. Gan, and D. G. Shao, 2016: Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies. J. Geophys. Res., 121, 14 469−14 486, https://doi.org/10.1002/2016JD025533.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205−1218, https://doi.org/10.1175/BAMS-84-9-1205.
Wang, B., and Coauthors, 2020: Monsoons climate change assessment. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-19-0335.1.
Wang, G. L., D. G. Wang, K. E. Trenberth, A. Erfanian, M. Yu, M. G. Bosilovich, and D. T. Parr, 2017a: The peak structure and future changes of the relationships between extreme precipitation and temperature. Nature Climate Change, 7, 268−274, https://doi.org/10.1038/nclimate3239.
Wang, H. J., Y. N. Chen, S. Xun, D. M. Lai, Y. T. Fan, and Z. Li, 2013: Changes in daily climate extremes in the arid area of northwestern China. Theor. Appl. Climatol., 112, 15−28, https://doi.org/10.1007/s00704-012-0698-7.
Wang, H. J., and Coauthors, 2012: Extreme climate in China: Facts, simulation and projection. Meteor. Z., 21, 279−304, https://doi.org/10.1127/0941-2948/2012/0330.
Wang, X. X., D. B. Jiang, and X. M. Lang, 2017b: Future extreme climate changes linked to global warming intensity. Science Bulletin, 62, 1673−1680, https://doi.org/10.1016/j.scib.2017.11.004.
Wei, W. G., Z. W. Yan, and P. D. Jones, 2017: Potential predictability of seasonal extreme precipitation accumulation in China. Journal of Hydrometeorology, 18, 1071−1080, https://doi.org/10.1175/JHM-D-16-0141.1.
Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522−555, https://doi.org/10.1002/2014RG000464.
Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1−41, https://doi.org/10.1142/S1793536909000047.
Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759−773, https://doi.org/10.1007/s00382-011-1128-8.
Xiao, C., P. L. Wu, L. X. Zhang, and L. C. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Scientific Reports, 6, 38506, https://doi.org/10.1038/srep38506.
Xie, P. P., M. Y. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. M. Liu, 2007a: A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8, 607−626, https://doi.org/10.1175/JHM583.1.
Xie, Z. H., F. Yuan, Q. Y. Duan, J. Zheng, M. L. Liang, and F. Chen, 2007b: Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. Journal of Hydrometeorology, 8, 447−468, https://doi.org/10.1175/JHM568.1.
Xin, X. G., T. W. Wu, J. Zhang, J. C. Yao, and Y. J. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. International Journal of Climatology, https://doi.org/10.1002/joc.6590.
Xu, Y., X. J. Gao, F. Giorgi, B. T. Zhou, Y. Shi, J. Wu, and Y. X. Zhang, 2018: Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv. Atmos. Sci., 35, 376−388, https://doi.org/10.1007/s00376-017-6269-1.
Yan, J. N., L. Mu, L. Z. Wang, R. Ranjan, and A. Y. Zomaya, 2020: Temporal convolutional networks for the advance prediction of ENSO. Scientific Reports, 10, 8055, https://doi.org/10.1038/s41598-020-65070-5.
Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096−1108, https://doi.org/10.1175/JCLI-3318.1.
Zhang, C., S. L. Li, F. F. Luo, and Z. Huang, 2019: The global warming hiatus has faded away: An analysis of 2014-2016 global surface air temperatures. International Journal of Climatology, 39, 4853−4868, https://doi.org/10.1002/joc.6114.
Zhang, Q., Y. J. Zheng, V. P. Singh, M. Luo, and Z. H. Xie, 2017a: Summer extreme precipitation in eastern China: Mechanisms and impacts. J. Geophys. Res., 122, 2766−2778, https://doi.org/10.1002/2016JD025913.
Zhang, W. X., and T. J. Zhou, 2020: Increasing impacts from extreme precipitation on population over China with global warming. Science Bulletin, 65, 243−252, https://doi.org/10.1016/j.scib.2019.12.002.
Zhang, W. X., T. J. Zhou, L. W. Zou, L. X. Zhang, and X. L. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nature Communications, 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.
Zhang, X. B., F. W. Zwiers, G. L. Li, H. Wan, and A. J. Cannon, 2017b: Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 10, 255−259, https://doi.org/10.1038/ngeo2911.
Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews-Climate Change, 2, 851−870, https://doi.org/10.1002/wcc.147.
Zhao, Y., D. L. Chen, J. Li, D. D. Chen, Y. Chang, J. Li, and R. Qin, 2020: Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. Climate Dyn., 54, 2713−2730, https://doi.org/10.1007/s00382-020-05139-z.
Zheng, D., 2008: Study on the Eco-geograhic Regional System of China. The Commercial Press, 387pp. (in Chinese)
Zhu, J. X., G. Huang, B. Baetz, X. Q. Wang, and G. H. Cheng, 2019: Climate warming will not decrease perceived low-temperature extremes in China. Climate Dyn., 52, 5641−5656, https://doi.org/10.1007/s00382-018-4469-8.
Zou, J., C. S. Zhan, Z. H. Xie, P. H. Qin, and S. S. Jiang, 2016a: Climatic impacts of the middle route of the South-to-North Water transfer project over the Haihe River basin in North China simulated by a regional climate model. J. Geophys. Res., 121, 8983−8999, https://doi.org/10.1002/2016JD024997.
Zou, L. W., and T. J. Zhou, 2016: Future summer precipitation changes over CORDEX- East Asia domain downscaled by a regional ocean- atmosphere coupled model: A comparison to the stand-alone RCM. J. Geophys. Res., 121, 2691−2704, https://doi.org/10.1002/2015JD024519.
Zou, L. W., T. J. Zhou, and D. D. Peng, 2016b: Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J. Geophys. Res., 121, 1442−1458, https://doi.org/10.1002/2015JD023912.