Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 2903−2921, https://doi.org/10.1175/JCLI3428.1.
Cai, L., V. A. Alexeev, and J. E. Walsh, 2020: Arctic sea ice growth in response to synoptic- and large-scale atmospheric forcing from CMIP5 models. J. Climate, 33, 6083−6099, https://doi.org/10.1175/JCLI-D-19-0326.1.
Carton, J. A., G. A. Chepurin, and L. G. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 6967−6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Cavalieri, D. J., J. P. Crawford, M. R. Drinkwater, D. T. Eppler, L. D. Farmer, R. R. Jentz, and C. C. Wackerman, 1991: Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager. J. Geophys. Res.: Oceans, 96, 21 989−22 008, https://doi.org/10.1029/91JC02335.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Comiso, J. C., 2017: Bootstrap sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. [Available online from https://nsidc.org/data/nsidc-0079/versions/3].
Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 2755−2781, https://doi.org/10.1175/JCLI-D-11-00316.1.
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel., 2017: Updated daily. Sea Ice Index, Version 3. NSIDC, National Snow and Ice Data Center. Boulder, Colorado, USA. [Available online from https://nsidc.org/data/G02135/versions/3]
Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546−561, https://doi.org/10.1002/qj.2401.
Holland, P. R., 2014: The seasonality of Antarctic sea ice trends. Geophys. Res. Lett., 41, 4230−4237, https://doi.org/10.1002/2014GL060172.
Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5, 872−875, https://doi.org/10.1038/ngeo1627.
Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of Arctic and Antarctic sea ice. J. Climate, 29, 5241−5249, https://doi.org/10.1175/JCLI-D-16-0121.1.
Intergovernmental Panel on Climate Change (IPCC), 2022: The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, https://doi.org/10.1017/9781009157964.
Kovacs, K. M., C. Lydersen, J. E. Overland, and S. E. Moore, 2011: Impacts of changing sea-ice conditions on Arctic marine mammals. Marine Biodiversity, 41, 181−194, https://doi.org/10.1007/s12526-010-0061-0.
Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003−2008. J. Geophys. Res.: Oceans, 114, C07005, https://doi.org/10.1029/2009JC005312.
Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732−737, https://doi.org/10.1002/grl.50193.
Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988−2003: Have we passed a tipping point? J. Climate, 18, 4879−4894, https://doi.org/10.1175/JCLI3587.1.
Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res.: Oceans, 87, 7971−7984, https://doi.org/10.1029/JC087iC10p07971.
Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9, 3427−3446, https://doi.org/10.5194/gmd-9-3427-2016.
Proshutinsky, A., and Coauthors, 2011: Recent advances in Arctic Ocean studies employing models from the Arctic Ocean model intercomparison project. Oceanography, 24, 102−113, https://doi.org/10.5670/oceanog.2011.61.
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas, 2017: A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11, 1607−1623, https://doi.org/10.5194/tc-11-1607-2017.
Sato, K., and J. Inoue, 2018: Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dyn., 50, 289−301, https://doi.org/10.1007/s00382-017-3607-z.
Schroeter, S., W. Hobbs, N. L. Bindoff, R. Massom, and R. Matear, 2018: Drivers of Antarctic sea ice volume change in CMIP5 models. J. Geophys. Res.: Oceans, 123, 7914−7938, https://doi.org/10.1029/2018JC014177.
Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res.: Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334−1337, https://doi.org/10.1038/nature09051.
Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959−964, https://doi.org/10.1002/grl.50174.
Serreze, M. C., and R. G. Barry, 1988: Synoptic activity in the Arctic Basin, 1979−85. J. Climate, 1, 1276−1295, https://doi.org/10.1175/1520-0442(1988)001<1276:SAITAB>2.0.CO;2.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110, E1191−E1195, https://doi.org/10.1073/pnas.1214212110.
Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, 135, 119−132, https://doi.org/10.1016/j.gloplacha.2015.10.011.
Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 1005−1027, https://doi.org/10.1007/s10584-011-0101-1.
Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015: Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience, 8, 643−646, https://doi.org/10.1038/ngeo2489.
Tschudi, M. A., W. N. Meier, and J. S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). The Cryosphere, 14, 1519−1536, https://doi.org/10.5194/tc-14-1519-2020.
Tsujino, H., and Coauthors, 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13, 3643−3708, https://doi.org/10.5194/gmd-13-3643-2020.
Vancoppenolle, M., and Coauthors, 2013: Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quaternary Science Reviews, 79, 207−230, https://doi.org/10.1016/j.quascirev.2013.04.011.
Wang, Q., and Coauthors, 2016: An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 99, 110−132, https://doi.org/10.1016/j.ocemod.2015.12.008.
Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525−531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.
Zhang, J. L., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845−861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.
Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J. Geophys. Res.: Oceans, 113, C07002, https://doi.org/10.1029/2007JC004621.
Zheng, F., Y. Sun, Q. H. Yang, and L. J. Mu, 2021: Evaluation of Arctic sea-ice cover and thickness simulated by MITgcm. Adv. Atmos. Sci., 38, 29−48, https://doi.org/10.1007/s00376-020-9223-6.