Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19−42, https://doi.org/10.1175/JAS3598.1.
Callaghan, J., and K. Tory, 2014: On the use of a system-scale ascent/descent diagnostic for short-term forecasting of Tropical Cyclone development, intensification and decay. Tropical Cyclone Research and Review, 3, 78−90, https://doi.org/10.6057/2014TCRR02.02.
Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531−550, https://doi.org/10.1175/JAS-D-14-0097.1.
Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146−162, https://doi.org/10.1175/JAS-D-12-062.1.
Chen, X. M., Y. Q. Wang, and K. Zhao, 2015: Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Mon. Wea. Rev., 143, 64−87, https://doi.org/10.1175/MWR-D-13-00338.1.
Chen, X. M., Y. Q. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877−898, https://doi.org/10.1175/MWR-D-16-0147.1.
Chen, X. M., Y. Q. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235−255, https://doi.org/10.1175/JAS-D-17-0129.1.
Cram, T. A., J. Persing, M. T. Montgomery, and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835−1856, https://doi.org/10.1175/JAS3921.1.
Deng, L., Y. H. Duan, W. H. Gao, and X. H. Zhang, 2016: Numerical simulation and comparison of cloud microphysical features of Super Typhoon Rammasun (2014). Acta Meteorological Sinica, 74, 697−714, https://doi.org/10.11676/qxxb2016.058. (in Chinese)
Duan, Y. H., R. S. Wu, R. L. Yu, and X. D. Liang, 2013: Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model. Acta Meteorologica Sinica, 27, 658−672, https://doi.org/10.1007/s13351-013-0503-2.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420−430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.
Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS. 11, 47 pp.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585−605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249−2269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.
Ge, X. Y., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859−3875, https://doi.org/10.1175/JAS-D-13-066.1.
Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511−530, https://doi.org/10.1175/JAS-D-14-0050.1.
Gu, J.-F., Z.-M. Tan, and X. Qiu, 2016: Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J. Atmos. Sci., 73, 1159−1177, https://doi.org/10.1175/JAS-D-15-0165.1.
Hack, J. J., and W.H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559−1573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.
Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294−3315, https://doi.org/10.1175/2009MWR2679.1.
Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 1022−1034, https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 535 pp.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme. Journal of the Korean Meteorological Society, 42, 129−151.
Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293−344, https://doi.org/10.1175/2009MWR2989.1.
Jiang, H. Y., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 1164−1176, https://doi.org/10.1175/MWR-D-11-00134.1.
Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteorol. Soc., 121, 821−851, https://doi.org/10.1002/qj.49712152406.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kanada, S., and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72, 4194−4217, https://doi.org/10.1175/JAS-D-14-0247.1.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting., 18, 1093−1108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.
Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220−241, https://doi.org/10.1175/2009WAF2222280.1.
Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374−1396, https://doi.org/10.1175/WAF-D-15-0032.1.
Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapragada, 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275−295, https://doi.org/10.1175/JAS-D-17-0171.1.
Li, Q. Q., Y. Q. Wang and Y. H. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203−227, https://doi.org/10.1175/JAS-D-16-0123.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16 663−16 682, https://doi.org/10.1029/97JD00237.
Molinari, J., J. Frank, D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 1048−1060, https://doi.org/10.1175/MWR-D-12-00135.1.
Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 2493−2509, https://doi.org/10.1175/JAS3291.1.
Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 3176−3207, https://doi.org/10.1175/1520-0469(1998)055<3176:TCVCFV>2.0.CO;2.
Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical-cyclone intensification. Australian Meteorological and Oceanographic Journal, 64, 37−66, https://doi.org/10.22499/2.6401.005.
Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of tropical cyclones. Annual Review of Fluid Mechanics, 49, 541−574, https://doi.org/10.1146/annurev-fluid-010816-060022.
Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New Insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteorol. Soc., 87, 1335−1347, https://doi.org/10.1175/BAMS-87-10-1335.
Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteorol. Soc., 140, 2132−2146, https://doi.org/10.1002/qj.2283.
Moon, I.-J., I. Ginis, T. Hara, and B. Thomas, 2007: A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 2869−2878, https://doi.org/10.1175/MWR3432.1.
Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteorol., 112, 1−31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.
Nguyen, L. T., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 4529−4551, https://doi.org/10.1175/JAS-D-15-0036.1.
Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. Journal of Advances in Modeling Earth Systems, 9, 908−931, https://doi.org/10.1002/2016MS000796.
Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 1765−1782, https://doi.org/10.1175/JAS-D-14-0318.1.
Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 3−22, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.
Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 9395−9414, https://doi.org/10.5194/acp-11-9395-2011.
Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 3517−3536, https://doi.org/10.1175/JAS-D-14-0350.1.
Riemer, M., M. T. Montgomery, M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163−3188, https://doi.org/10.5194/acp-10-3163-2010.
Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327−346, https://doi.org/10.5194/acp-13-327-2013.
Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 71−93, https://doi.org/10.1175/JAS-D-15-0052.1.
Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970−2991, https://doi.org/10.1175/MWR-D-12-00357.1.
Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536−562, https://doi.org/10.1175/MWR-D-14-00175.1.
Rogers, R. F., J. A. Zhang, J. Zawislak, H. Y. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 3355−3376, https://doi.org/10.1175/MWR-D-16-0017.1.
Sanger, N. T., M. T. Montgomery, R. K. Smith, and M. M. Bell, 2014: An observational study of tropical cyclone spinup in Supertyphoon Jangmi (2008) from 24 to 27 September. Mon. Wea. Rev., 142, 3−28, https://doi.org/10.1175/MWR-D-12-00306.1.
Simpson, R. H., and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Miami Beach, FL, American Meteorological Society, D4.1−D4.10.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp.
Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 3020−3031, https://doi.org/10.1175/JAS-D-15-0017.1.
Smith, R. K., J. A. Zhang, and M. T. Montgomery, 2017: The dynamics of intensification in a Hurricane Weather Research and Forecasting simulation of Hurricane Earl (2010). Quart. J. Roy. Meteorol. Soc., 143, 293−308, https://doi.org/10.1002/qj.2922.
Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Q. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 1283−1306, https://doi.org/10.1175/JAS-D-14-0261.1.
Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817−1830, https://doi.org/10.1175/2010JAS3318.1.
Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 2394−2413, https://doi.org/10.1175/JAS-D-11-0232.1.
Tory, K. J., 2014: The turning winds with height thermal advection rainfall diagnostic: Why does it work in the tropics? Australian Meteorological and Oceanographic Journal, 64, 231−238, https://doi.org/10.22499/2.6403.005.
Tory, K. J., R. A. Dare, N. E. Davidson, J. L. McBride, and S. S. Chand, 2013: The importance of low-deformation vorticity in tropical cyclone formation. Atmos. Chem. Phys., 13, 2115−2132, https://doi.org/10.5194/acp-13-2115-2013.
Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol. Atmos. Phys., 99, 1−16, https://doi.org/10.1007/s00703-006-0238-z.
Wang, H., and Y. Q. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29−48, https://doi.org/10.1175/MWR-D-13-00070.1.
Wang, X., Y. F. Ren, and X. Li, 2016: The warm-core structure of Super Typhoon Rammasun derived by FY-3C microwave temperature sounder measurements. Atmospheric Science Letters, 17, 432−436, https://doi.org/10.1002/asl.675.
Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes−A review. Meteorol. Atmos. Phys., 87, 257−278, https://doi.org/10.1007/s00703-003-0055-6.
Wang, Y. Q., Y. J. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 3434−3453, https://doi.org/10.1175/MWR-D-15-0049.1.
Wei, M. Z., T. Zoltan, R. Wobus, Y. J. Zhu, C. H. Bishop, and X. G. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 28−44, https://doi.org/10.1111/j.1600-0870.2006.00159.x.
Wei, M. Z., T. Zoltan, R. Wobus, and Y. J. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 62−79, https://doi.org/10.1111/j.1600-0870.2007.00273.x.
Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859−1876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.
Wu, L. G., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65−86, https://doi.org/10.1175/JAS3597.1.
Zagrodnik, J. P., and H. Y. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789−2809, https://doi.org/10.1175/JAS-D-13-0314.1.
Zeng, Z. H., Y. Q. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity−An observational study. Mon. Wea. Rev., 135, 38−59, https://doi.org/10.1175/MWR3278.1.
Zeng, Z. H., L. S. Chen, and Y. Q. Wang, 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Wea. Rev., 136, 3307−3322, https://doi.org/10.1175/2008MWR2388.1.
Zeng, Z. H., Y. Q. Wang, Y. H. Duan, L. S. Chen, and Z. Q. Gao, 2010: On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv. Atmos. Sci., 27, 337−355, https://doi.org/10.1007/s00376-009-8209-1.
Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975−983, https://doi.org/10.1175/JAS-D-12-0133.1.
Zhang, X. H., Y. H. Duan, Y. Q. Wang, N. Wei, and H. Hu, 2017: A high-resolution simulation of Supertyphoon Rammasun (2014)−Part I: Model verification and surface energetics analysis. Adv. Atmos. Sci., 34, 757−770, https://doi.org/10.1007/s00376-017-6255-7.
Zhang, Z., V. Tallapragada, C. Kieu, S. Trahan, and W. G. Wang, 2014: HWRF based ensemble prediction system using perturbations from GEFS and stochastic convective trigger function. Tropical Cyclone Research and Review, 3, 145−161, https://doi.org/10.6057/2014TCRR03.02.