Akasofu, S.-I., 1981: Energy coupling between the solar wind and the magnetosphere. Space Science Reviews, 28, 121−190, https://doi.org/10.1007/BF00218810.
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, Cambridge, 489 pp.
Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmospheric Research, 101, 809−834, https://doi.org/10.1016/j.atmosres.2011.04.007.
Baumgaertner, A. J. G., A. Seppälä, P. Jöckel, and M. A. Clilverd, 2011: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmospheric Chemistry and Physics, 11, 4521−4531, https://doi.org/10.5194/acp-11-4521-2011.
Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990−2009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.
Castanheira, J. M., and H.-F. Graf, 2003: North Pacific-North Atlantic relationships under stratospheric control? J Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.
Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83−109, https://doi.org/10.1029/JZ066i001p00083.
Cionni, I., and Coauthors, 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmospheric Chemistry and Physics, 11, 11267−11292, https://doi.org/10.5194/acp-11-11267-2011.
Cnossen, I., H. L. Liu, and H. Lu, 2016: The whole atmosphere response to changes in the Earth's magnetic field from 1900 to 2000: An example of “top-down” vertical coupling. J. Geophys. Res., 121, 7781−7800, https://doi.org/10.1002/2016JD024890.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Crooker, N. U., J. Feynman, and J. T. Gosling, 1977: High correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res., 82, 1933−1937, https://doi.org/10.1029/JA082i013p01933.
Dungey, J. W., 1961: Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47−48, https://doi.org/10.1103/PhysRevLett.6.47.
Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600−2616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.
Francis, J. A., 2017: Why are Arctic linkages to extreme weather still up in the air? Bull. Amer. Meteorol. Soc., 98, 2551−2557, https://doi.org/10.1175/BAMS-D-17-0006.1.
Gong, D.-Y., J. Yang, S.-J. Kim, Y. Q. Gao, D. Guo, T. J. Zhou, and M. Hu, 2011: Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Climate Dyn., 37, 2199−2216, https://doi.org/10.1007/s00382-011-1041-1.
Gray, L. J., and Coauthors, 2010: Solar influence on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.
Gray, L. J., and Coauthors, 2013: A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res., 118, 13 405−13 420, https://doi.org/10.1002/2013JD020062.
Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proceedings of the National Academy of Sciences of the United States of America, 97, 1412−1417, https://doi.org/10.1073/pnas.97.4.1412.
He, S.-P., H.-J. Wang, Y.-Q. Gao, F. Li, H. Li, and C. Wang, 2018: Influence of solar wind energy flux on the interannual variability of ENSO in the subsequent year. Atmospheric and Oceanic Science Letters, 11, 165−172, https://doi.org/10.1080/16742834.2018.1436367.
He, S. P., H. J. Wang, Y. Q. Gao, and F. Li, 2019a: Recent intensified impact of December Arctic Oscillation on subsequent January temperature in Eurasia and North Africa. Climate Dyn., 52, 1077−1094, https://doi.org/10.1007/s00382-018-4182-7.
He, S. P., H. J. Wang, F. Li, H. Li, and C. Wang, 2019b: Solar-wind-magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate. National Science Review, https://doi.org/10.1093/nsr/nwz082.
Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.
Ineson, S., A. A. Scaife, J. R. Knight, J. C. Manners, N. J. Dunstone, L. J. Gray, and J. D. Haigh, 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geoscience, 4, 753−757, https://doi.org/10.1038/ngeo1282.
Jackman, C. H., M. T. Deland, G. J. Labow, E. L. Fleming, and M. López-Puertas, 2006: Satellite measurements of middle atmospheric impacts by solar proton events in Solar cycle 23. Space Science Reviews, 125, 381−391, https://doi.org/10.1007/s11214-006-9071-4.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kodera, K., 2003: Solar influence on the spatial structure of the NAO during the winter 1900-1999. Geophys. Res. Lett., 30, 1175, https://doi.org/10.1029/2002GL016584.
Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, https://doi.org/10.1029/2002JD002224.
Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8, 759−762, https://doi.org/10.1038/ngeo2517.
Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 2718−2743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.
Li, Y., H. Lu, M. J. Jarvis, M. A. Clilverd, and B. Bates, 2011: Nonlinear and nonstationary influences of geomagnetic activity on the winter North Atlantic Oscillation. J. Geophys. Res., 116, D16109, https://doi.org/10.1029/2011JD015822.
Lilensten, J., T. D. de Wit, and K. Matthes, 2015: Earth's Climate Response to a Changing Sun. EDP Sciences, Paris.
Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074−4079, https://doi.org/10.1073/pnas.1114910109.
Lockwood, M., R. G. Harrison, T. Woollings, and S. K. Solanki, 2010: Are cold winters in Europe associated with low solar activity? Environmental Research Letters, 5, 024001, https://doi.org/10.1088/1748-9326/5/2/024001.
Lu, H., M. J. Jarvis, and R. E. Hibbins, 2008: Possible solar wind effect on the Northern Annular Mode and northern hemispheric circulation during winter and spring. J. Geophys. Res., 113, D23104, https://doi.org/10.1029/2008JD010848.
Matthes, K., 2011: Atmospheric science: Solar cycle and climate predictions. Nature Geoscience, 4, 735−736, https://doi.org/10.1038/ngeo1298.
Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10, 2247−2302, https://doi.org/10.5194/gmd-10-2247-2017.
McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 9, 838−842, https://doi.org/10.1038/ngeo2820.
Meraner, K., and H. Schmidt, 2018: Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation. Atmospheric Chemistry and Physics, 18, 1079−1089, https://doi.org/10.5194/acp-18-1079-2018.
Miao, J. P., T. Wang, H. J. Wang, and Y. Q. Gao, 2018: Influence of low-frequency Solar forcing on the East Asian winter monsoon based on HadCM3 and observations. Adv. Atmos. Sci., 35, 1205−1215, https://doi.org/10.1007/s00376-018-7229-0.
Mironova, I. A., and Coauthors, 2015: Energetic particle influence on the Earth's atmosphere. Space Science Reviews, 194, 1−96, https://doi.org/10.1007/s11214-015-0185-4.
Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7, 869−873, https://doi.org/10.1038/ngeo2277.
Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 994−1013, https://doi.org/10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2.
Newell, P. T., T. Sotirelis, K. Liou, and F. J. Rich, 2008: Pairs of solar wind-magnetosphere coupling functions: Combining a merging term with a viscous term works best. J. Geophys. Res., 113, A04218, https://doi.org/10.1029/2007JA012825.
Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophys. Res. Lett., 45, 3255−3263, https://doi.org/10.1002/2017GL076502.
Pfahl, S., 2014: Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences, 14, 1461−1475, https://doi.org/10.5194/nhess-14-1461-2014.
Roy, I., and J. D. Haigh, 2010: Solar cycle signals in sea level pressure and sea surface temperature. Atmospheric Chemistry and Physics, 10, 3147−3153, https://doi.org/10.5194/acp-10-3147-2010.
Rozanov, E., L. Callis, M. Schlesinger, F. Yang, N. Andronova, and V. Zubov, 2005: Atmospheric response to NOy source due to energetic electron precipitation. Geophys. Res. Lett., 32, L14811, https://doi.org/10.1029/2005GL023041.
Rozanov, E., M. Calisto, T. Egorova, T. Peter, and W. Schmutz, 2012: Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surveys in Geophysics, 33, 483−501, https://doi.org/10.1007/s10712-012-9192-0.
Scaife, A. A., S. Ineson, J. R. Knight, L. Gray, K. Kodera, and D. M. Smith, 2013: A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett., 40, 434−439, https://doi.org/10.1002/grl.50099.
Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change, 4, 577−582, https://doi.org/10.1038/nclimate2268.
Screen, J. A., 2017a: The missing Northern European winter cooling response to Arctic sea ice loss. Nature Communications, 8, 14603, https://doi.org/10.1038/ncomms14603.
Screen, J. A., 2017b: Far-flung effects of Arctic warming. Nature Geoscience, 10, 253−254, https://doi.org/10.1038/ngeo2924.
Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979−2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333−344, https://doi.org/10.1007/s00382-013-1830-9.
Screen, J. A., C. Deser, and L. T. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteorol. Soc., 96, 1489−1503, https://doi.org/10.1175/BAMS-D-14-00185.1.
Seppälä, A., and M. A. Clilverd, 2014: Energetic particle forcing of the Northern Hemisphere winter stratosphere: Comparison to solar irradiance forcing. Frontiers in Physics, 2, 25, https://doi.org/10.3389/fphy.2014.00025.
Seppälä, A., C. E. Randall, M. A. Clilverd, E. Rozanov, and C. J. Rodger, 2009: Geomagnetic activity and polar surface air temperature variability. J. Geophys. Res., 114, A10312, https://doi.org/10.1029/2008JA014029.
Sinnhuber, M., and Coauthors, 2018: NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002−2010. Atmospheric Chemistry and Physics, 18, 1115−1147, https://doi.org/10.5194/acp-18-1115-2018.
Sinnhuber, M., H. Nieder, and N. Wieters, 2012: Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surveys in Geophysics, 33, 1281−1334, https://doi.org/10.1007/s10712-012-9201-3.
Sun, L. T., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 5345−5352, https://doi.org/10.1002/2016GL069024.
Thiéblemont, R., K. Matthes, N.-E. Omrani, K. Kodera, and F. Hansen, 2015: Solar forcing synchronizes decadal North Atlantic climate variability. Nature Communications, 6, 8268, https://doi.org/10.1038/ncomms9268.
Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85−89, https://doi.org/10.1126/science.1058958.
Wallace, J. M., 2000: North atlantic oscillatiodannular mode: Two paradigms-one phenomenon. Quart. J. Roy. Meteorol. Soc., 126, 791−805, https://doi.org/10.1002/qj.49712656402.
Wang, C., J. P. Han, H. Li, Z. Peng, and J. D. Richardson, 2014: Solar wind-magnetosphere energy coupling function fitting: Results from a global MHD simulation. J. Geophys. Res., 119, 6199−6212, https://doi.org/10.1002/2014JA019834.
Wang, L., R. H. Huang, L. Gu, W. Chen, and L. H. Kang, 2009: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 4860−4872, https://doi.org/10.1175/2009JCLI2973.1.
Wang, S.-Y., and J. P. Liu, 2016: Delving into the relationship between autumn Arctic sea ice and central-eastern Eurasian winter climate. Atmospheric and Oceanic Science Letters, 9, 366−374, https://doi.org/10.1080/16742834.2016.1207482.
Woollings, T., M. Lockwood, G. Masato, C. Bell, and L. Gray, 2010: Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett., 37, L20805, https://doi.org/10.1029/2010GL044601.
Xu, X. P., F. Li, S. P. He, and H. J. Wang, 2018a: Subseasonal reversal of East Asian surface temperature variability in winter 2014/15. Adv. Atmos. Sci., 35, 737−752, https://doi.org/10.1007/s00376-017-7059-5.
Xu, X. P., S. P. He, F. Li, and H. J. Wang, 2018b: Impact of northern Eurasian snow cover in autumn on the warm Arctic-cold Eurasia pattern during the following January and its linkage to stationary planetary waves. Climate Dyn., 50, 1993−2006, https://doi.org/10.1007/s00382-017-3732-8.
Xu, X. P., S. P. He, Y. Q. Gao, T. Furevik, H. J. Wang, F. Li, and F. Ogawa, 2019: Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dyn., 53, 3971−3983, https://doi.org/10.1007/s00382-019-04764-7.
Yao, Y., and D. H. Luo, 2015: Do European blocking events precede North Atlantic Oscillation events? Adv. Atmos. Sci., 32, 1106−1118, https://doi.org/10.1007/s00376-015-4209-5.