Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224−232, https://doi.org/10.1038/nature01092.
Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991.
Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9, 549−554, https://doi.org/10.1038/ngeo2731.
Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561−576, https://doi.org/10.1007/s00376-012-2113-9.
Bindoff, N. L., and Coauthors, 2019: Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., In press.
Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 3803−3822, https://doi.org/10.1175/JCLI-D-12-00543.1.
Chen, C. L., G. H. Wang, S. P. Xie, and W. Liu, 2019a: Why does global warming weaken the gulf stream but intensify the kuroshio? J. Climate, 32, 7437−7451, https://doi.org/10.1175/JCLI-D-18-0895.1.
Chen, L., X. Qu, G. Huang, and Y. F. Gong, 2019b: Projections of East Asian summer monsoon under 1.5 C and 2 C warming goals. Theor. Appl. Climatol., 137, 2187−2201, https://doi.org/10.1007/s00704-018-2720-1.
Cheng, L. J., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128−129, https://doi.org/10.1126/science.aav7619.
Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 2688−2701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.
Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 1982−2005, https://doi.org/10.1175/2008JCLI2471.1.
Church, J. A., and N. J. White, 2011: Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32, 585−602, https://doi.org/10.1007/s10712-011-9119-1.
Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Y. Wang, 2009: Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 36, L14801, https://doi.org/10.1029/2009GL038777.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7, 627−637, https://doi.org/10.1038/ngeo2234.
Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 8373−8379, https://doi.org/10.1175/JCLI-D-12-00490.1.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Francis, J. A., and E. Hunter, 2007: Changes in the fabric of the Arctic’s greenhouse blanket. Environmental Research Letters, 2, 045011, https://doi.org/10.1088/1748-9326/2/4/045011.
Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53−56, https://doi.org/10.1038/nature06502.
Guo, Y. Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 1057−1066, https://doi.org/10.1007/s00376-020-2004-4.
Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 36, 771−778, https://doi.org/10.1007/s00376-019-9027-8.
He, B., and Coauthors, 2020: CAS FGOALS-f3-L model datasets for CMIP6 GMMIP tier-1 and tier-3 experiments. Adv. Atmos. Sci., 37, 18−28, https://doi.org/10.1007/s00376-019-9085-y.
Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686−5699, https://doi.org/10.1175/JCLI3990.1.
Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. R. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 2418−2427, https://doi.org/10.1175/2009JCLI3466.1.
Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221−232, https://doi.org/10.1007/s00382-003-0332-6.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, P., S. P. Xie, K. M. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nature Geoscience, 6, 357−361, https://doi.org/10.1038/ngeo1792.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.
IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. V. Masson-Delmotte,, et al., Eds., In Press.
Johnson, N. C., and S. P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nature Geoscience, 3, 842−845, https://doi.org/10.1038/ngeo1008.
Kamae, Y., and M. Watanabe, 2013: Tropospheric adjustment to increasing CO2: Its timescale and the role of land-sea contrast. Climate Dyn., 41, 3007−3024, https://doi.org/10.1007/s00382-012-1555-1.
Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667−671, https://doi.org/10.1038/s41558-020-0819-8.
Kim, H., and S. I. An, 2013: On the subarctic North Atlantic cooling due to global warming. Theor. Appl. Climatol., 114, 9−19, https://doi.org/10.1007/s00704-012-0805-9.
Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, https://doi.org/10.1029/2010GL045022.
Lambert, F. H., and M. J. Webb, 2008: Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett., 35, L16706, https://doi.org/10.1029/2008GL034838.
Li, D. H., T. J. Zhou, L. W. Zou, W. X. Zhang, and L. X. Zhang, 2018: Extreme high-temperature events over east Asia in 1.5°C and 2°C warmer futures: Analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett., 45, 1541−1550, https://doi.org/10.1002/2017GL076753.
Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543−560, https://doi.org/10.1007/s00376-012-2140-6.
Li, L. J., and Coauthors, 2020: The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2019ms002012.
Lin, P. F., H. L. Liu, Y. Q. Yu, and T. J. Zhou, 2013: Long-term behaviors of two versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Adv. Atmos. Sci., 30, 577−592, https://doi.org/10.1007/s00376-013-2186-0.
Long, S. M., S. P. Xie, X. T. Zheng, and Q. Y. Liu, 2014: Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. J. Climate, 27, 285−299, https://doi.org/10.1175/JCLI-D-13-00297.1.
Long, S. M., S. P. Xie, and W. Liu, 2016: Uncertainty in tropical rainfall projections: Atmospheric circulation effect and the Ocean Coupling. J. Climate, 29, 2671−2687, https://doi.org/10.1175/jcli-d-15-0601.1.
Long, S. M., S. P. Xie, Q. Y. Liu, X. T. Zheng, G. Huang, K. M. Hu, and Y. Du, 2018: Slow ocean response and the 1.5 and 2℃ warming targets. Chinese Science Bulletin, 63, 558−570, https://doi.org/10.1360/N972017-01115. (in Chinese with English abstract)
Long, S.-M., S.-P. Xie, Y. Du, Q. Y. Liu, X.-T. Zheng, G. Huang, K.-M. Hu, and J. Ying, 2020: Effects of ocean slow response under low warming targets. J. Climate, 33, 477−496, https://doi.org/10.1175/jcli-d-19-0213.1.
Ma, J., S. P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 2979−2994, https://doi.org/10.1175/JCLI-D-11-00048.1.
Mann, M. E., 2009: Defining dangerous anthropogenic interference. Proceedings of the National Academy of Sciences of the United States of America, 106, 4065−4066, https://doi.org/10.1073/pnas.0901303106.
Menary, M. B., and R. A. Wood, 2018: An anatomy of the projected North Atlantic warming hole in CMIP5 models. Climate Dyn., 50, 3063−3080, https://doi.org/10.1007/s00382-017-3793-8.
Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293−322, https://doi.org/10.1002/qj.49711347517.
Nangombe, S., T. J. Zhou, W. X. Zhang, B. Wu, S. Hu, L. W. Zou, and D. H. Li, 2018: Record-breaking climate extremes in Africa under stabilized 1.5°C and 2°C global warming scenarios. Nature Climate Change, 8, 375−380, https://doi.org/10.1038/s41558-018-0145-6.
Nie, Y., L. J. Li, Y. L. Tang, and B. Wang, 2019: Impacts of changes of external forcings from CMIP5 to CMIP6 on surface temperature in FGOALS-g2. SOLA, 15, 211−215, https://doi.org/10.2151/SOLA.2019-038.
Palter, J. B., T. L. Frölicher, D. Paynter, and J. G. John, 2018: Climate, ocean circulation, and sea level changes under stabilization and overshoot pathways to 1.5 K warming. Earth System Dynamics, 9, 817−828, https://doi.org/10.5194/esd-9-817-2018.
Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181−184, https://doi.org/10.1038/ngeo2071.
Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336−6351, https://doi.org/10.1175/2010JCLI3682.1.
Qu, X., and G. Huang, 2018: Different multi-year mean temperature in mid-summer of South China under different 1.5°C warming scenarios. Scientific Reports, 8, 13794, https://doi.org/10.1038/s41598-018-32277-6.
Sanderson, B. M., B. C. O’Neill, and C. Tebaldi, 2016: What would it take to achieve the Paris temperature targets? Geophys Res. Lett., 43, 7133−7142, https://doi.org/10.1002/2016GL069563.
Schaeffer, M., W. Hare, S. Rahmstorf, and M. Vermeer, 2012: Long-term sea-level rise implied by 1.5°C And 2°C warming levels. Nature Climate Change, 2, 867−870, https://doi.org/10.1038/nclimate1584.
Schleussner, C. F., P. Pfleiderer, and E. M. Fischer, 2017: In the observational record half a degree matters. Nature Climate Change, 7, 460−462, https://doi.org/10.1038/nclimate3320.
Schweiger, A. J., R. W. Lindsay, S. Vavrus, and J. A. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21, 4799−4810, https://doi.org/10.1175/2008JCLI2156.1.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334−1337, https://doi.org/10.1038/nature09051.
Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 4651−4668, https://doi.org/10.1175/2010JCLI3655.1.
Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 11−19, https://doi.org/10.5194/tc-3-11-2009.
Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85−96, https://doi.org/10.1016/j.gloplacha.2011.03.004.
Sgubin, G., D. Swingedouw, S. Drijfhout, Y. Mary, and A. Bennabi, 2017: Abrupt cooling over the North Atlantic in modern climate models. Nature Communications, 8, 14375, https://doi.org/10.1038/ncomms14375.
Simmonds, I., and K. Keay, 2009: Extraordinary september arctic sea ice reductions and their relationships with storm behavior over 1979-2008. Geophys. Res. Lett., 36, L19715, https://doi.org/10.1029/2009GL039810.
Song, M. R., L. J. Li, and J. P. Liu, 2014: Sea ice simulations of FGOALS. Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou et al., Eds., Springer, 303−309, https://doi.org/10.1007/978-3-642-41801-3_36.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485−498, https://doi.org/10.1175/BAMS-D-11-00094.1.
van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5−31, https://doi.org/10.1007/s10584-011-0148-z.
Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316−4340, https://doi.org/10.1175/JCLI4258.1.
Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73−76, https://doi.org/10.1038/nature04744.
Wang, G. H., S. P. Xie, R. X. Huang, and C. J. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 8574−8584, https://doi.org/10.1175/JCLI-D-14-00809.1.
Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, https://doi.org/10.1029/2005GL025244.
Wu, P. L., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, L12705, https://doi.org/10.1029/2010GL043730.
Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966−986, https://doi.org/10.1175/2009JCLI3329.1.
Xu, Y. Y., and V. Ramanathan, 2017: Well below 2°C: Mitigation strategies for avoiding dangerous to catastrophic climate changes. Proceedings of the National Academy of Sciences of the United States of America, 114, 10 315−10 323, https://doi.org/10.1073/pnas.1618481114.
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhang, W. X., T. J. Zhou, L. W. Zou, L. X. Zhang, and X. L. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nature Communications, 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.
Zhou, T. J., and F. F. Song, 2014: Representative concentration pathway (RCP) projection of climate change by FGOALS. Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou et al., Eds., Springer, 267−274.
Zhou, T. J., F. F. Song, and X. L. Chen, 2013: Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Adv. Atmos. Sci., 30, 638−657, https://doi.org/10.1007/s00376-013-2205-1.
Zhou, T. J., and Coauthors, 2020: Development of climate and earth system models in China: Past achievements and new CMIP6 results. Journal of Meteorological Research, 34, 1−19, https://doi.org/10.1007/s13351-020-9164-0.