Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578−599, https://doi.org/10.1175/1520-0493(1998)126<0578:mccape>2.0.co;2.
Augustine, J. A., and K. W. Howard, 1991: Mesoscale convective complexes over the United States during 1986 and 1987. Mon. Wea. Rev., 119, 1575−1589, https://doi.org/10.1175/1520-0493(1991)119<1575:mccotu>2.0.co;2.
Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116−135, https://doi.org/10.1175/1520-0434(1994)009<0116:ltptnm>2.0.co;2.
Bai, A. J., X. D. Liu, and C. H. Liu, 2011: Contrast of diurnal variations of summer precipitation between the Tibetan Plateau and Sichuan Basin. Plateau Meteorology, 30, 852−859. (in Chinese with English abstract)
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Chen, Q., J. W. Fan, S. Hagos, W. I. Gustafson Jr., and L. K. Berg, 2015: Roles of wind shear at different vertical levels: Cloud system organization and properties. J. Geophys. Res., 120, 6551−6574, https://doi.org/10.1002/2015JD023253.
Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land-sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793−4815, https://doi.org/10.1175/JAS-D-16-0106.1.
Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 1231−1252, https://doi.org/10.1175/jas3681.1.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Fu, S. M., J.-H. Sun, Y.-L. Luo, and Y.-C. Zhang, 2017: Formation of long-lived summertime mesoscale vortices over central East China: Semi-idealized simulations based on a 14-year vortex statistic. J. Atmos. Sci., 74, 3955−3979, https://doi.org/10.1175/jas-d-16-0328.1.
Fu, W., D.-H. Wang, H. Yin, J.-F. Yin, and J. Li, 2013: Constrct analysis on statistical characteristic of MCSs over Qinghai-Xizang Plateau and East Asia in warm season. Plateau Meteorology, 32, 929−943, https://doi.org/10.7522/j.issn.1000-0534.2012.00089. (in Chinese with English abstract
He, H. Z., and F. Q. Zhang, 2010: Diurnal variations of warm-season precipitation over northern China. Mon. Wea. Rev., 138, 1017−1025, https://doi.org/10.1175/2010mwr3356.1.
He, Z. W., Q. H. Zhang, K. Zhao, and H. Q. Hu, 2018: Initiation and evolution of elevated convection in a nocturnal squall line along the Meiyu front. J. Geophys. Res., 123, 7292−7310, https://doi.org/10.1029/2018JD028511.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129−151.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134(9), 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hu, L., D. F. Deng, S. T. Gao, and X. D. Xu, 2016: The seasonal variation of Tibetan convective systems: Satellite observation. J. Geophys. Res., 121, 5512−5525, https://doi.org/10.1002/2015jd024390.
Jiang, J. X., and M. Z. Fan, 2002: Convective clouds and mesoscale convective systems over the Tibetan Plateau in Summer. Chinese Journal of Atmospheric Sciences, 26, 263−270, https://doi.org/10.3878/j.issn.1006-9895.2002.02.12. (in Chinese with English abstract
Jirak, I. L., W. R. Cotton, and R. L. McAnelly, 2003: Satellite and radar survey of mesoscale convective system development. Mon. Wea. Rev., 131, 2428−2449, https://doi.org/10.1175/1520-0493(2003)131<2428:sarsom>2.0.co;2.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)04360;0170:tkcpau62;2.0.co;2.
Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389−405, https://doi.org/10.1002/qj.49712353807.
Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-Rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon. Wea. Rev., 142(1), 203−221, https://doi.org/10.1175/MWR-D-13-00111.1.
Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteorol. Soc., 61, 1374−1387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.
Mathon, V., and H. Laurent., 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377−406, https://doi.org/10.1002/qj.49712757208.
May, P. T, and A. Ballinger, 2007: The statistical characteristics of convective cells in a monsoon regime (Darwin, Northern Australia). Mon. Wea. Rev., 135, 82−92.
Meng, Z. Y., D. C. Yan, and Y. J. Zhang, 2013: General features of squall lines in East China. Mon. Wea. Rev., 141, 1629−1647, https://doi.org/10.1175/mwr-d-12-00208.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−16 682,
Qi, X. X., and Y. G. Zheng, 2009: Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007. Journal of Applied Meteorological Science, 20, 286−294,
Rafati, S., and M. Karimi, 2017: Assessment of mesoscale convective systems using IR brightness temperature in the southwest of Iran. Theor. Appl. Climatol., 129, 539−549, https://doi.org/10.1007/s00704-016-1797-7.
Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 2399−2420, https://doi.org/10.1175/mwr-d-10-05006.1.
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7), 3465−3485, https://doi.org/10.1016/j.jcp.2007.01.037.
Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140, 379−397, https://doi.org/10.1175/mwr-d-11-00041.1.
Tollerud, E. I., and R. S. Collander, 1993: Mesoscale convective systems and extreme rainfall in the central United States. Extreme Hydrological Events: Precipitation, Floods and Droughts, Z. W. Kundzewicz et al., Eds., IAHS Publ. 213, 11–19.
Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 1078−1098, https://doi.org/10.1175/1520-0493(1993)121<1078:eoecpt>2.0.co;2.
Trier, S. B., C. A. Davis, and D. A. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental united States. J. Atmos. Sci., 67, 1066−1090, https://doi.org/10.1175/2009JAS3247.1.
Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 9591−9613, https://doi.org/10.1029/jd092id08p09591.
Yang, R., Y. Zhang, J. Sun, S. Fu, and J. Li, 2019: The characteristics and classification of eastward-propagating mesoscale convective systems generated over the second-step terrain in the Yangtze River Valley. Atmos Sci Lett., 20, e874, https://doi.org/10.1002/asl.874.
Yang, R. Y., Y. C. Zhang, J. H. Sun, and J. Li, 2020: The comparison of statistical features and synoptic circulations between the eastward-propagating and quasi-stationary MCSs during the warm season around the second-step terrain along the middle reaches of the Yangtze River. Science China Earth Sciences, 63, 1209−1222, https://doi.org/10.1007/s11430-018-9385-3.
Yang, X. R., J. F. Fei, X. G. Huang, X. P. Cheng, L. M. V. Carvalho, and H. R. He, 2015: Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J. Climate, 28, 4890−4907, https://doi.org/10.1175/jcli-d-14-00491.1.
Zhang, Y. C., and J. H. Sun, 2017: Comparison of the diurnal variations of precipitation east of the Tibetan Plateau among sub-periods of Meiyu season. Meteorol. Atmos. Phys., 129, 539−554, https://doi.org/10.1007/s00703-016-0484-7.
Zhang, Y. C., J. H. Sun, and S. M. Fu, 2014: Impacts of diurnal variation of mountain-plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the Mei-Yu season. Adv. Atmos. Sci., 31(1), 139−153, https://doi.org/10.1007/s00376-013-2052-0.
Zhang, Y. C., F. Q. Zhang, C. A. Davis, and J. H. Sun, 2018: Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-Yu front over the East China plains. J. Atmos. Sci., 75(3), 1005−1025, https://doi.org/10.1175/jas-d-17-0197.1.
Zheng, L. L., and J. H. Sun, 2016: The impact of vertical wind shear on the intensity and organizational mode of mesoscale convective systems using numerical experiments. Chinese Journal of Atmospheric Sciences, 40, 324−340, https://doi.org/10.3878/j.issn.1006-9895.1505.14311. (in Chinese with English abstract
Zheng, L. L., J. H. Sun, X. L. Zhang, and C. H. Liu, 2013: Organizational Modes of Mesoscale convective systems over Central East China. Wea. Forecasting, 28, 1081−1098, https://doi.org/10.1175/waf-d-12-00088.1.
Zheng, Y. G., J. Chen, and P. J. Zhu, 2008: Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer. Chinese Science Bulletin, 53, 1574−1586, https://doi.org/10.1007/s11434-008-0116-9.
Zhuo, H., P. Zhao, C. H. Li, and Z. X. Pu, 2012: Analysis of climatic characteristics of mesoscale convective system over the lower reaches of the Yellow River during summer. Chinese Journal of Atmospheric Sciences, 36, 1112−1122, https://doi.org/10.3878/j.issn.1006-9895.2011.11174. (in Chinese with English abstract
Zipser, E. J., D. J. Cecil, C. T. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth. Bull. Amer. Meteor. Soc., 87, 1057−1071, https://doi.org/10.1175/bams-87-8-1057.