Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2009:On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Wea. Forecasting, 24, 575-594.
Anthes, R. A., and S. W. Chang, 1978:Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, 1240-1255.
Arya, S. P., 1988: Introduction to Micrometeorology. Academic Press, 307 pp.
Bao, J.-W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012:Impact of physics representations in the HWRFX on simulated hurricane structure and pressure-wind relationships. Mon. Wea. Rev., 140, 3278-3299.
Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Y. Peng, 2009:Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715-1731.
Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011:On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885-901.
Dudhia, J., 1989:Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
Dyer, A. J., and B. B. Hicks, 1970:Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715-721.
Emanuel, K. A., 1986:An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585-604.
Fudeyasu, H., and Y. Q. Wang, 2011:Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430-449.
Gentry, M. S., and G. M. Lackmann, 2010:Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688-704.
Hobbs, S., D. Dyer, D. Courault, A. Olioso, J.-P. Lagouarde, Y. Kerr, J. Mcaneney, and J. Bonnefond, 2002:Surface layer profiles of air temperature and humidity measured from unmanned aircraft. Agron. Sustain. Dev., 22, 635-640.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 529 pp.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012:A revised scheme for the WRF surface layer formulation. J. Atmos. Sci., 140, 898-918.
Jordan, C. L., 1958:Mean soundings for the West Indies area. J. Meteor., 15, 91-97.
Kain, J. S., 2004:The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181.
Kepert, J. D., 2006:Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 2194-2211.
Kepert, J. D., and Y. Q. Wang, 2001:The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485-2501.
Kieu, C. Q., H. Chen, and D.-L. Zhang, 2010:An examination of the pressure-wind relationship for intense tropical cyclones. Wea. Forecasting, 25, 895-907.
Kimball, S. K., and F. C. Dougherty, 2006:The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon. Wea. Rev., 134, 1987-2008.
Knaff, J. A., and R. M. Zehr, 2007:Reexamination of tropical cyclone wind-pressure relationships. Wea. Forecasting, 22, 71-88.
Lin, Y. L., R. D. Farley, and H. D. Orville, 1983:Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 1065-1092.
Liu, B., H. Q. Liu, L. Xie, C. L. Guan, and D. L. Zhao, 2011:A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132-152.
Liu, Y. B., D.-L. Zhang, and M. K. Yau, 1999:A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616.
Ma, Z. H., J. F. Fei, L. Liu, X. G. Huang, and X. P. Cheng, 2013:Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air-sea interaction conditions. Mon. Wea. Rev., 141, 1285-1303.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997:Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663-16 682.
Monin, A. S., and A. M. Obukhov, 1954:Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Inst. Teor. Geofiz. Akad. Nauk SSSR, 24, 163-187.
Nolan, D. S., Y. Moon, and D. P. Stern, 2007:Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377-3405.
Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a:Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 3651-3674.
Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b:Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 3675-3698.
Paulson, C. A., 1970:The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857-861.
Powell, M. D., 1990:Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918-938.
Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003:Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283.
Rotunno, R., and K. A. Emanuel, 1987:An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561.
Shapiro, L. J., and H. E. Willoughby, 1982:The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394.
Shin, H. H., S. Y. Hong, and J. Dudhia, 2012:Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations. Mon. Wea. Rev., 140, 664-682.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
Smith, R. K., M. T. Montgomery, and N. Van Sang, 2010:Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 1665-1670.
Smith, R. K., and M. T. Montgomery, and V. S. Nguyen, 2009:Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321-1335.
Stern, D. P., and D. S. Nolan, 2011:On the vertical decay rate of the maximum tangential winds in tropical cyclones. J. Atmos. Sci., 68, 2073-2094.
Stern, D. P., and D. S. Nolan, 2012:On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657-1680.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 666 pp.
Wang, Y. Q., 2008a:Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 1158-1181.
Wang, Y. Q., 2008b:Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model-TCM4. J. Atmos. Sci., 65, 1505-1527.
Wang, Y. Q., 2009:How do outer spiral rainbands affect tropical cyclone structure and intensity?J. Atmos. Sci., 66, 1250-1273.
Wang, Y. Q., and J. Xu, 2010:Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97-116.
Webb, E. K., 1970:Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 67-90.
Wei, H., M. Segal, W. J. Gutowski Jr., Z. Pan, R. W. Arritt, and W. A. Gallus Jr., 2001:Sensitivity of simulated regional surface thermal fluxes during warm advection snowmelt to selection of the lowest model level height. J. Hydrometeor., 2, 395-405.
Wu, C.-C., H.-J. Cheng, Y. Q. Wang, and K.-H. Chou, 2009:A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 21-40.
Xu, J., and Y. Q. Wang, 2010a:Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831-1852.
Xu, J., and Y. Q. Wang, 2010b:Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 4135-4157.
Yang, M.-J., D.-L. Zhang, X.-D. Tang, and Y. Zhang, 2011:A modeling study of Typhoon Nari (2001) at landfall: 2. Structural changes and terrain-induced asymmetries. J. Geophys. Res., 116, D09112, doi: 10.1029/2010JD015445.
Yau, M. K., Y. B. Liu, D.-L. Zhang, and Y. S. Chen, 2004:A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132, 1410-1433.
Zängl, G., A. Gohm, and F. Obleitner, 2008:The impact of the PBL scheme and the vertical distribution of model layers on simulations of Alpine foehn. Meteor. Atmos. Phys., 99, 105-128.
Zhang, D.-L., and R. A. Anthes, 1982:A high-resolution model of the planetary boundary layer-Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594-1609.
Zhang, D.-L., and X. X. Wang, 2003:Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20, 711-725.
Zhang, D.-L., and H. Chen, 2012:Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi: 10.1029/2011GL050578.
Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011:On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 2523-2535.
Zhang, W. Q., W. Perrie, and W. B. Li, 2006:Impacts of waves and sea spray on midlatitude storm structure and intensity. Mon. Wea. Rev., 134, 418-442.
Zhu, H. Y., U. Wolfgang, and R. K. Smith, 2004:Ocean effects on tropical cyclone intensification and inner-core asymmetries. J. Atmos. Sci., 61, 1245-1258.