Barnston, A. G., 1992: Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score. Wea. Forecasting, 7(4), 699−709, https://doi.org/10.1175/1520-0434(1992)007<0699:CATCRA>2.0.CO;2.
Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 372 pp.
Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central united states in summer. Mon. Wea. Rev., 98, 735−744, https://doi.org/10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.
Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 1872−1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.
Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941−3961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.
Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influence of PBL parameterization on the practical predictability of convection initiation during the Mesoscale Predictability Experiment (MPEX). Wea. Forecasting, 32, 1161−1183, https://doi.org/10.1175/WAF-D-16-0174.1.
Clark, A. J., M. C. Coniglio, B. E. Coffer, G. Thompson, M. Xue, and F. Y. Kong, 2015: Sensitivity of 24-h forecast dryline position and structure to boundary layer parameterizations in convection-allowing WRF model simulations. Wea. Forecasting, 30, 613−638, https://doi.org/10.1175/WAF-D-14-00078.1.
Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591−612, https://doi.org/10.1175/WAF-D-14-00105.1.
Coniglio, M. C., J. Correia Jr, P. T. Marsh, and F. Y. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842−862, https://doi.org/10.1175/WAF-D-12-00103.1.
Dong, M. Y., C. X. Ji, F. Chen, and Y. Q. Wang, 2019: Numerical study of boundary layer structure and rainfall after landfall of Typhoon Fitow (2013): Sensitivity to planetary boundary layer parameterization. Adv. Atmos. Sci., 36, 431−450, https://doi.org/10.1007/s00376-018-7281-9.
Efstathiou, G. A., N. M. Zoumakis, D. Melas, C. J. Lolis, and P. Kassomenos, 2013: Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on large-scale processes. Atmospheric Research, 132−133, 125−143, https://doi.org/10.1016/j.atmosres.2013.05.004.
Fu, S.-M., J.-H. Sun, Y.-L. Luo, and Y.-C. Zhang, 2017: Formation of long-lived summertime mesoscale vortices over central east China: Semi-idealized simulations based on a 14-year vortex statistic. J. Atmos. Sci., 74, 3955−3979, https://doi.org/10.1175/JAS-D-16-0328.1.
Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 1691−1706, https://doi.org/10.1175/BAMS-D-11-00187.1.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hu, X.-M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 1831−1844, https://doi.org/10.1175/2010JAMC2432.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the Mellor-Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteorol., 157, 23−43, https://doi.org/10.1007/s10546-015-0045-5.
Janjić, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927−945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898−918, https://doi.org/10.1175/MWR-D-11-00056.1.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Li, X. L., and Z. X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 4819−4838, https://doi.org/10.1175/2008MWR2366.1.
Liang, X.-Z., Q. Li, H. X. Mei, and M. J. Zeng, 2019: Multi-grid nesting ability to represent convections across the gray zone. Journal of Advances in Modeling Earth Systems, 11, 4352−4376, https://doi.org/10.1029/2019MS001741.
Liu, J. J., F. M. Zhang, and Z. X. Pu, 2017: Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes. Adv. Atmos. Sci., 34, 482−496, https://doi.org/10.1007/s00376-016-6209-5.
Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851−875, https://doi.org/10.1029/RG020i004p00851.
Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163−187.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991−1007, https://doi.org/10.1175/2008MWR2556.1.
Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteorol., 112, 1−31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.
Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteorol., 119, 397−407, https://doi.org/10.1007/s10546-005-9030-8.
Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895−912, https://doi.org/10.2151/jmsj.87.895.
Olson, J. B., J. S. Kenyon, W. M. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN-EDMF scheme and the coupling to other components in WRF−ARW. NOAA Technical Memorandum OAR GSD-61, 37 pp.
Pleim, J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol., 46, 1383−1395, https://doi.org/10.1175/JAM2539.1.
Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteorol. Climatol., 46, 1396−1409, https://doi.org/10.1175/JAM2534.1.
Qiao, F. X., and X.-Z. Liang, 2017: Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Climate Dyn., 49, 225−247, https://doi.org/10.1007/s00382-016-3338-6.
Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936−949, https://doi.org/10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.
Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteorol., 139, 261−281, https://doi.org/10.1007/s10546-010-9583-z.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR/TN–475+STR, 125 pp.
Srinivas, C. V., V. Yesubabu, D. Hari Prasad, K. B. R. R. Hari Prasad, M. M. Greeshma, R. Baskaran, and B. Venkatraman, 2018: Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics. Atmospheric Research, 210, 66−82, https://doi.org/10.1016/j.atmosres.2018.04.014.
Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.
Stull, R. B., 2011: Meteorology for Scientists and Engineers, 3rd ed., Brooks Cole, 938 pp.
Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteorol., 117, 231−257, https://doi.org/10.1007/s10546-004-6848-4.
Sun, J. H., S. X. Zhao, G. K. Xu, and Q. T. Meng, 2010: Study on a mesoscale convective vortex causing heavy rainfall during the Mei-yu season in 2003. Adv. Atmos. Sci., 27, 1193−1209, https://doi.org/10.1007/s00376-009-9156-6.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Proc. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, American Meteorological Society, WA, 11−15.
Wang, H., Y. Q. Wang, and H. M. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteorologica Sinica, 27, 455−475, https://doi.org/10.1007/s13351-013-0418-y.
Wang, W., and C. Bruyere, 2017: ARW version 3deling system user’s guide. NCAR, 443 pp. [Available online from http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/contents.html]
Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed., Elsevier, 669 pp.
Wisse, J. S. P., and J. V. G. de Arellano, 2004: Analysis of the role of the planetary boundary layer schemes during a severe convective storm. Annales Geophysicae, 22, 1861−1874, https://doi.org/10.5194/angeo-22-1861-2004.
Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita”. J. Atmos. Sci., 61, 1816−1826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
Yan, L. Z., and X. P. Yao, 2019: Structural characteristics of the Yangtze-Huaihe cold shear line over eastern china in summer. Atmosphere, 10(4), 207, https://doi.org/10.3390/atmos10040207.
Yano, J.-I., P. Bénard, F. Couvreux, and A. Lahellec, 2010: NAM-SCA: A nonhydrostatic anelastic model with segmentally constant approximations. Mon. Wea. Rev., 138, 1957−1974, https://doi.org/10.1175/2009MWR2997.1.