Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 1536−1549, https://doi.org/10.1175/2009MWR3090.1.
Birgin, E. G., J. M. Martínez, and M. Raydan, 2001: Algorithm 813: SPG—Software for convex-constrained optimization. ACM Transactions on Mathematical Software, 27, 340−349, https://doi.org/10.1145/502800.502803.
Black, P., L. Harrison, M. Beaubien, R. Bluth, R. Woods, A. Penny, R. W. Smith, and J. D. Doyle, 2017: High-Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777−796, https://doi.org/10.1175/JTECH-D-14-00210.1.
Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s hurricane and severe storm sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 2085−2102, https://doi.org/10.1175/BAMS-D-15-00186.1.
Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925−933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.
Chen, B. Y., M. Mu, and X. H. Qin, 2013: The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts. Mon. Wea. Rev., 141, 2669−2682, https://doi.org/10.1175/MWR-D-12-00142.1.
Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 1728−1743, https://doi.org/10.1175/2010MWR3582.1.
Feng, J., and X. G. Wang, 2019: Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of hurricane Patricia (2015). Mon. Wea. Rev., 147, 3069−3089, https://doi.org/10.1175/MWR-D-18-0305.1.
Feng, J., X. H., Qin, C. Q., Wu, P., Zhang, L., Yang, X. S., Shen, W., Han, and Y. Z., Liu, 2022: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun-4A’s geostationary interferometric infrared sounder (GIIRS). Atmospheric Research, 280, https://doi.org/10.1016/j.atmosres.2022.106391.
Hong, S. Y., T. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113(D13), D13103, https://doi.org/10.1029/2008JD009944.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond., Eds., American Meteorological Society, 165−170,
Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol., 22, 1065−1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493−501, https://doi.org/10.5194/npg-10-493-2003.
Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 1623−1639, https://doi.org/10.1175/2008MWR2640.1.
Qin, X. H., and M. Mu, 2012: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138, 185−197, https://doi.org/10.1002/qj.902.
Qin, X. H., W. S. Duan, and H. Xu, 2020: Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF. Adv. Atmos. Sci., 37, 291−306, https://doi.org/10.1007/s00376-019-9187-6.
Snyder, C., 1996: Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteor. Soc., 77, 953−961, https://doi.org/10.1175/1520-0477-77.5.953.
Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908−920, https://doi.org/10.1175/2010MWR3377.1.
Wu, C.-C., and Coauthors, 2005: Dropwindsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787−790, https://doi.org/10.1175/BAMS-86-6-787.
Wu, C.-C., K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea. Forecasting, 22, 1157−1176, https://doi.org/10.1175/2007WAF2006062.1.
Zhou, F. F., and M. Mu, 2011: The impact of verification area design on tropical cyclone targeted observations based on the CNOP method. Adv. Atmos. Sci., 28(5), 997−1010, https://doi.org/10.1007/s00376-011-0120-x.
Zhou, F. F., and M. Mu, 2012: The impact of horizontal resolution on the CNOP and on its identified sensitive areas for tropical cyclone predictions. Adv. Atmos. Sci., 29(1), 36−46, https://doi.org/10.1007/s00376-011-1003-x.