Abeleira, A., I. B. Pollack, B. Sive, Y. Zhou, E. V. Fischer, and D. K. Farmer, 2017: Source characterization of volatile organic compounds in the Colorado Northern Front Range Metropolitan Area during spring and summer 2015. J. Geophys. Res., 122, 3595−3613, https://doi.org/10.1002/2016JD026227.
An, J. L., B. Zhu, H. L. Wang, Y. Y. Li, X. Lin, and H. Yang, 2014: Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ., 97, 206−214, https://doi.org/10.1016/j.atmosenv.2014.08.021.
An, J. L., J. X. Wang, Y. X. Zhang, and B. Zhu, 2017: Source apportionment of volatile organic compounds in an urban environment at the Yangtze River Delta, China. Archives of Environmental Contamination and Toxicology, 72, 335−348, https://doi.org/10.1007/s00244-017-0371-3.
Assan, S., F. R. Vogel, V. Gros, A. Baudic, J. Staufer, and P. Ciais, 2018: Can we separate industrial CH4 emission sources from atmospheric observations?--A test case for carbon isotopes, PMF and enhanced APCA Atmos. Environ., 187, 317−327, https://doi.org/10.1016/j.atmosenv.2018.05.004.
Bari, M. A., and W. B. Kindzierski, 2018: Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of the Total Environment, 631−632, 627−640, https://doi.org/10.1016/j.scitotenv.2018.03.023.
Borbon, A., N. Locoge, M. Veillerot, J. C. Galloo, and R. Guillermo, 2002: Characterisation of NMHCs in a French urban atmosphere: Overview of the main sources. Science of the Total Environment, 292, 177−191, https://doi.org/10.1016/S0048-9697(01)01106-8.
Carter, W. P. L., 2010: Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. California Air Resources Board Contract 07-339.
Carter, W. P. L., G. Heo, D. R. Cocker Ⅲ, and S. Nakao, 2012: SOA formation: Chamber study and model development. California Air Resources Board Contract No. 08-326.
Chen, C. H., Y. C. Chuang, C. C. Hsieh, and C. S. Lee, 2019: VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan. Atmospheric Pollution Research, 10, 1060−1074, https://doi.org/10.1016/j.apr.2019.01.014.
Chen, L. W. A., and J. J. Cao, 2018: PM2.5 source apportionment using a hybrid environmental receptor model. Environmental Science & Technology, 52, 6357−6369, https://doi.org/10.1021/acs.est.8b00131.
Cheng, L. J., S. Wang, Z. Y. Gong, H. Li, Q. Yang, and Y. Wang, 2018: Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China. Journal of Environmental Sciences, 67, 179−190, https://doi.org/10.1016/j.jes.2017.08.011.
Dai, W. T., H. Zhong, L. Li, J. J. Cao, Y. Huang, M. Shen, L. Q. Wang, J. G. Dong, X. X. Tie, S. S. H. Ho, K. F. Ho, 2018: Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime. Science of The Total Environment, 633, 30−316, https://doi.org/10.1016/j.scitotenv.2018.03.124.
Derwent, R. G., M. E. Jenkin, S. R. Utembe, D. E. Shallcross, T. P. Murrells, and N. R. Passant, 2010: Secondary organic aerosol formation from a large number of reactive man-made organic compounds. Science of the Total Environment, 408, 3374−3381, https://doi.org/10.1016/j.scitotenv.2010.04.013.
Duan, J. C., J. H. Tan, L. Yang, S. Wu, and J. M. Hao, 2008: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88, 25−35, https://doi.org/10.1016/j.atmosres.2007.09.004.
Durmusoglu, E., F. Taspinar, and A. Karademir, 2010: Health risk assessment of BTEX emissions in the landfill environment. Journal of Hazardous Materials, 176, 870−877, https://doi.org/10.1016/j.jhazmat.2009.11.117.
Feng, J. J., S. Gao, Q. Y. Fu, X. J. Chen, X. L. Chen, D. M. Han, and J. P. Cheng, 2019: Indirect source apportionment of methyl mercaptan using CMB and PMF models: A case study near a refining and petrochemical plant. Environmental Science and Pollution Research, 26, 24 305−24 312, https://doi.org/10.1007/s11356-019-05728-4.
Feng, T., and Coauthors, 2016: Summertime ozone formation in Xi'an and surrounding areas, China. Atmospheric Chemistry and Physics, 16, 4323−4342, https://doi.org/10.5194/acp-16-4323-2016.
Filella, I., and J. Peñuelas, 2006a: Daily, weekly and seasonal relationships among VOCs, NOxx and O3 in a semi-urban area near Barcelona. Journal of Atmospheric Chemistry, 54, 189−201, https://doi.org/10.1007/s10874-006-9032-z.
Filella, I., and J. Peñuelas, 2006b: Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmos. Environ., 40, 7752−7769, https://doi.org/10.1016/j.atmosenv.2006.08.002.
Gu, Y. Y., and Coauthors, 2019: Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotoxicology and Environmental Safety, 169, 797−806, https://doi.org/10.1016/j.ecoenv.2018.11.091.
Heo, J., B. de Foy, M. R. Olson, P. Pakbin, C. Sioutas, and J. J. Schauer, 2015: Impact of regional transport on the anthropogenic and biogenic secondary organic aerosols in the Los Angeles Basin. Atmos. Environ., 103, 171−179, https://doi.org/10.1016/j.atmosenv.2014.12.041.
Hernández-Paniagua, I., and Coauthors, 2018: Increasing weekend effect in ground-level O3 in metropolitan areas of Mexico during 1988−2016. Sustainability, 10, 3330, https://doi.org/10.3390/su10093330.
Ho, K. F., S. C. Lee, H. Guo, and W. Y. Tsai, 2004: Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Science of the Total Environment, 322, 155−166, https://doi.org/10.1016/j.scitotenv.2003.10.004.
Ho, K. F., and Coauthors, 2009: Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong. Atmospheric Chemistry and Physics, 9, 7491−7504, https://doi.org/10.5194/acp-9-7491-2009.
Hopke, P. K., 2016: Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association, 66, 237−259, https://doi.org/10.1080/10962247.2016.1140693.
Hu, D., Q. J. Bian, T. W. Y. Li, A. K. H. Lau, and J. Z. Yu, 2008: Contributions of isoprene, monoterpenes, β-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. J. Geophys. Res., 113, D22206, https://doi.org/10.1029/2008JD010437.
Huang, R. J., and Coauthors, 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218−222, https://doi.org/10.1038/nature13774.
Huang, Y. S., and C. C. Hsieh, 2019: Ambient volatile organic compound presence in the highly urbanized city: Source apportionment and emission position. Atmos. Environ., 206, 45−59, https://doi.org/10.1016/j.atmosenv.2019.02.046.
Hwa, M. Y., C. C. Hsieh, T. C. Wu, and L. F. W. Chang, 2002: Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmos. Environ., 36, 1993−2002, https://doi.org/10.1016/S1352-2310(02)00148-6.
Johnson, D., M. E. Jenkin, K. Wirtz, and M. Martin-Reviejo, 2004: Simulating the formation of secondary organic aerosol from the photooxidation of Toluene. Environmental Chemistry, 1, 150−165, https://doi.org/10.1071/EN04069.
Kelly, J. M., R. M. Doherty, F. M. O'Connor, and G. W. Mann, 2018: The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol. Atmospheric Chemistry and Physics, 18, 7393−7422, https://doi.org/10.5194/acp-18-7393-2018.
Kim, E., and P. K. Hopke, 2004: Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. J. Geophys. Res., 109, D09204, https://doi.org/10.1029/2003JD004199.
Kleindienst, T. E., M. Jaoui, M. Lewandowski, J. H. Offenberg, C. W. Lewis, P. V. Bhave, and E. O. Edney, 2007: Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ., 41, 8288−8300, https://doi.org/10.1016/j.atmosenv.2007.06.045.
Lee, S., and A. G. Russell, 2007: Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmos. Environ., 41, 9616−9624, https://doi.org/10.1016/j.atmosenv.2007.08.022.
Li, B. W., and Coauthors, 2017a: Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmos. Environ., 161, 1−12, https://doi.org/10.1016/j.atmosenv.2017.04.029.
Li, G. H., and Coauthors, 2017b: Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: Observations and source attributions. Atmospheric Chemistry and Physics, 17, 2759−2774, https://doi.org/10.5194/acp-17-2759-2017.
Li, N., and Coauthors, 2018: Impacts of biogenic and anthropogenic emissions on summertime ozone formation in the Guanzhong Basin, China. Atmospheric Chemistry and Physics, 18, 7489−7507, https://doi.org/10.5194/acp-18-7489-2018.
Liu, C. T., C. L. Zhang, Y. J. Mu, J. F. Liu, and Y. Y. Zhang, 2017: Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes. Environmental Pollution, 221, 385−391, https://doi.org/10.1016/j.envpol.2016.11.089.
Liu, W. T., H. C. Hsieh, S. P. Chen, J. S. Chang, N. H. Lin, C. C. Chang, and J. L. Wang, 2012: Diagnosis of air quality through observation and modeling of volatile organic compounds (VOCs) as pollution tracers. Atmos. Environ., 55, 56−63, https://doi.org/10.1016/j.atmosenv.2012.03.017.
Liu, X. H., and Coauthors, 2010: Understanding of regional air pollution over China using CMAQ, part I performance evaluation and seasonal variation. Atmos. Environ., 44, 2415−2426, https://doi.org/10.1016/j.atmosenv.2010.03.035.
Liu, Y., M. Shao, L. L. Fu, S. H. Lu, L. M. Zeng, and D. G. Tang, 2008: Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ., 42, 6247−6260, https://doi.org/10.1016/j.atmosenv.2008.01.070.
Liu, Y. H., and Coauthors, 2019: Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmos. Environ., 215, 116902, https://doi.org/10.1016/j.atmosenv.2019.116902.
Louie, P. K. K., and Coauthors, 2013: VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ., 76, 125−135, https://doi.org/10.1016/j.atmosenv.2012.08.058.
Lyu, X. P., N. Chen, H. Guo, W. H. Zhang, N. Wang, Y. Wang, and M. Liu, 2016: Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Science of the Total Environment, 541, 200−209, https://doi.org/10.1016/j.scitotenv.2015.09.093.
Maji, K. J., W. F. Ye, M. Arora, and S. M. S. Nagendra, 2019: Ozone pollution in Chinese cities: Assessment of seasonal variation, health effects and economic burden. Environmental Pollution, 247, 792−801, https://doi.org/10.1016/j.envpol.2019.01.049.
Mazzuca, G. M., X. R. Ren, C. P. Loughner, M. Estes, J. H. Crawford, K. E. Pickering, A. J. Weinheimer, and R. R. Dickerson, 2016: Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013. Atmospheric Chemistry and Physics, 16, 14 463−14 474, https://doi.org/10.5194/acp-16-14463-2016.
Menchaca-Torre, H. L., R. Mercado-Hernández, J. Rodríguez-Rodríguez, and A. Mendoza-Domínguez, 2015: Diurnal and seasonal variations of carbonyls and their effect on ozone concentrations in the atmosphere of Monterrey, Mexico. Journal of the Air & Waste Management Association, 65, 500−510, https://doi.org/10.1080/10962247.2015.1005849.
Mo, Z. W., M. Shao, and S. Lu, 2016: Compilation of a source profile database for hydrocarbon and OVOC emissions in China. Atmos. Environ., 143, 209−217, https://doi.org/10.1016/j.atmosenv.2016.08.025.
Ou, J. M., J. Y. Zheng, R. R. Li, X. B. Huang, Z. M. Zhong, L. J. Zhong, and H. Lin, 2015: Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Science of the Total Environment, 530−531, 393−402, https://doi.org/10.1016/j.scitotenv.2015.05.062.
Peng, Y. P., K. S. Chen, C. H. Lai, P. J. Lu, and J. H. Kao, 2006: Concentrations of H2O2 and HNO3 and O3−VOC−NOx sensitivity in ambient air in southern Taiwan. Atmos. Environ., 40, 6741−6751, https://doi.org/10.1016/j.atmosenv.2006.05.079.
Seco, R., and Coauthors, 2011: Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: The effect of local biogenic emissions. Atmospheric Chemistry and Physics, 11, 13 161−13 179, https://doi.org/10.5194/acp-11-13161-2011.
Shao, P., J. L. An, J. Y. Xin, F. K. Wu, J. X. Wang, D. S. Ji, and Y. S. Wang, 2016: Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmospheric Research, 176−177, 64−74, https://doi.org/10.1016/j.atmosres.2016.02.015.
Sharkey, T. D., A. E. Wiberley, and A. R. Donohue, 2007: Isoprene emission from plants: Why and how. Annals of Botany, 101, 5−18, https://doi.org/10.1093/aob/mcm240.
Shen, Z. X., and Coauthors, 2008: Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi’an, China. Journal of the Air & Waste Management Association, 58, 1560−1570, https://doi.org/10.3155/1047-3289.58.12.1560.
Shen, Z. X., and Coauthors, 2009: Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an. China. Atmos. Environ., 43, 2911−2918, https://doi.org/10.1016/j.atmosenv.2009.03.005.
Song, S. K., Z. H. Shon, Y. H. Kang, K. H. Kim, S. B. Han, M. Kang, J. H. Bang, and I. Oh, 2019: Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul. Environmental Pollution, 247, 763−774, https://doi.org/10.1016/j.envpol.2019.01.102.
Srivastava, A., 2004: Source apportionment of ambient VOCS in Mumbai city. Atmos. Environ., 38, 6829−6843, https://doi.org/10.1016/j.atmosenv.2004.09.009.
Sun, J., and Coauthors, 2018: VOCs emission profiles from rural cooking and heating in Guanzhong Plain, China and its potential effect on regional O3 and SOA formation. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-2018-36.
Sun, J., and Coauthors, 2019a: Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. Environment International, 133, 105252, https://doi.org/10.1016/j.envint.2019.105252.
Sun, J., and Coauthors, 2019b: Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi’an, China. Environmental Science and Pollution Research, 26, 27 769−27 782, https://doi.org/10.1007/s11356-019-05950-0.
Sun, J., and Coauthors, 2019c: Volatile organic compounds from residential solid fuel burning in Guanzhong Plain, China: Source-related profiles and risks. Chemosphere, 221, 184−192, https://doi.org/10.1016/j.chemosphere.2019.01.002.
Sun, J., F. K. Wu, B. Hu, G. Q. Tang, J. K. Zhang, and Y. S. Wang, 2016: VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos. Environ., 141, 560−570, https://doi.org/10.1016/j.atmosenv.2016.06.060.
Suryawanshi, S., A. S. Chauhan, R. Verma, and T. Gupta, 2016: Identification and quantification of indoor air pollutant sources within a residential academic campus. Science of the Total Environment, 569−570, 46−52, https://doi.org/10.1016/j.scitotenv.2016.06.061.
Tan, Z. F., and Coauthors, 2018: Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Science of the Total Environment, 636, 775−786, https://doi.org/10.1016/j.scitotenv.2018.04.286.
Tang, G. Q., and Coauthors, 2019: Decreased gaseous carbonyls in the North China plain from 2004 to 2017 and future control measures. Atmos. Environ., 218, 117015, https://doi.org/10.1016/j.atmosenv.2019.117015.
Verstraeten, W. W., J. L. Neu, J. E. Williams, K. W. Bowman, J. R. Worden, and K. F. Boersma, 2015: Rapid increases in tropospheric ozone production and export from China. Nature Geoscience, 8, 690−695, https://doi.org/10.1038/ngeo2493.
Wang, H., and Coauthors, 2014: Source profiles of volatile organic compounds from biomass burning in Yangtze River Delta, China. Aerosol and Air Quality Research, 14, 818−828, https://doi.org/10.4209/aaqr.2013.05.0174.
Wang, H. L., and Coauthors, 2018: Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Science of the Total Environment, 621, 1300−1309, https://doi.org/10.1016/j.scitotenv.2017.10.098.
Wang, T., L. K, Xue, P. Brimblecombe, Y. F. Lam, L. Li, and L. Zhang, 2017: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575, 1582−1596, https://doi.org/10.1016/j.scitotenv.2016.10.081.
Wang, X., Z. X. Shen, J. J. Cao, L. M. Zhang, L. Liu, J. J. Li, S. X. Liu, and Y. F. Sun, 2012: Characteristics of surface ozone at an urban site of Xi'an in Northwest China. Journal of Environmental Monitoring, 14, 116−126, https://doi.org/10.1039/C1EM10541H.
Watson, J. G., J. C. Chow, E. M. Fujita, 2001: Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ., 35, 1567−1584, https://doi.org/10.1016/S1352-2310(00)00461-1.
Wei, W., S. Y. Cheng, G. H. Li, G. Wang, and H. Y. Wang, 2014: Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmos. Environ., 89, 358−366, https://doi.org/10.1016/j.atmosenv.2014.01.038.
Wu, S., and Coauthors, 2020: Vertically decreased VOC concentration and reactivity in the planetary boundary layer in winter over the North China Plain. Atmospheric Research, 240, 104930, https://doi.org/10.1016/j.atmosres.2020.104930.
Wu, X. M., Y. Wu, S. J. Zhang, H. Liu, L. X. Fu, and J. M. Hao, 2016: Assessment of vehicle emission programs in China during 1998-2013: Achievement, challenges and implications. Environmental Pollution, 214, 556−567, https://doi.org/10.1016/j.envpol.2016.04.042.
Yuan, B., Y. Liu, M. Shao, S. H. Lu, and D. G. Streets, 2010: Biomass burning contributions to ambient VOCs species at a receptor site in the Pearl River Delta (PRD), China. Environmental Science & Technology, 44, 4577−4582, https://doi.org/10.1021/es1003389.
Zhang, J., H. Q. Jiang, G. Y. Liu, and W. H. Zeng, 2018a: A study on the contribution of industrial restructuring to reduction of carbon emissions in China during the five Five-Year Plan periods. Journal of Cleaner Production, 176, 629−635, https://doi.org/10.1016/j.jclepro.2017.12.133.
Zhang, J. F., and K. R. Smith, 2007: Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions. Environmental Health Perspectives, 115, 848−855, https://doi.org/10.1289/ehp.9479.
Zhang, Q., and Coauthors, 2015: Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi'an. China. Atmos. Environ., 112, 64−71, https://doi.org/10.1016/j.atmosenv.2015.04.033.
Zhang, Q. J., L. Wu, X. Z. Fang, M. Y. Liu, J. Zhang, M. Shao, S. H. Lu, and H. J. Mao, 2018b: Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study. Science of the Total Environment, 624, 878−886, https://doi.org/10.1016/j.scitotenv.2017.12.171.
Zhang, Z., and Coauthors, 2016: Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China's developed coastal regions. J. Geophys. Res., 121, 6669−6687, https://doi.org/10.1002/2016JD025115.
Zou, Y., E. Charlesworth, C. Q. Yin, X. L. Yan, X. J. Deng, and F. Li, 2019: The weekday/weekend ozone differences induced by the emissions change during summer and autumn in Guangzhou, China. Atmos. Environ., 199, 114−126, https://doi.org/10.1016/j.atmosenv.2018.11.019.