Bai, Y. Q., H. X. Qi, T. L. Zhao, H. Yang, L. Liu, and C. G. Cui, 2018: Analysis of meteorological conditions and diurnal variation characteristics of PM2.5 heavy pollution episodes in the winter of 2015 in Hubei province. Acta Meteorologica Sinica, 76(5), 803−815, https://doi.org/10.11676/qxxb2018.029. (in Chinese with English abstract)
Boylan, J. W., and A. G. Russell, 2006: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ., 40(26), 4946−4959, https://doi.org/10.1016/j.atmosenv.2005.09.087.
Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation. J. Geophys. Res., 92(D12), 14681−14700, https://doi.org/10.1029/JD092iD12p14681.
Chen, D., Z. Q. Liu, J. Fast, and J. Ban, 2016: Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmospheric Chemistry and Physics, 16, 10707−10724, https://doi.org/10.5194/acp-16-10707-2016.
Chen, Q., L. F. Sheng, Y. Gao, Y. C. Miao, S. F. Hai, S. H. Gao, and Y. Gao, 2019: The effects of the trans-regional transport of PM2.5 on a heavy haze event in the Pearl River delta in January 2015. Atmosphere, 10, 237, https://doi.org/10.3390/atmos10050237.
Chen, S. Y., J. P. Huang, Y. Qian, and J. M. Ge, 2014: Effects of aerosols on autumn precipitation over Mid-Eastern China. Journal of Tropical Meteorology, 20(3), 242−250, https://doi.org/10.16555/j.1006-8775.2014.03.007.
Chen, Y. Y., A. Ebenstein, M. Greenstone, and H. B. Li, 2013: Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy. Proceedings of the National Academy of Sciences of the United States of America, 110(32), 12936−12941, https://doi.org/10.1073/pnas.1300018110.
Cheng, H. R., Z. W. Wang, J. L. Feng, H. L. Chen, F. Zhang, and J. Liu, 2012: Carbonaceous species composition and source apportionment of PM2.5 in urban atmosphere of Wuhan. Ecology and Environmental Sciences, 21(9), 1574−1579, https://doi.org/10.3969/j.issn.1674-5906.2012.09.011. (in Chinese with English abstract)
Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo 104606, 85 pp.
Ding, X., Q. F. He, R. Q. Shen, Q. Q. Yu, Y. Q. Zhang, J. Y. Xin, T. X. Wen, and X. M. Wang, 2016: Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter. Sci. Rep., 6, 20411, https://doi.org/10.1038/srep20411.
Eichler, H., and Coauthors, 2008: Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in south-eastern China. Atmos. Environ., 42, 6321−6334, https://doi.org/10.1016/j.atmosenv.2008.05.007.
Gong, W., T. H. Zhang, Z. M. Zhu, Y. Y. Ma, X. Ma, and W. Wang, 2015: Characteristics of PM1.0, PM2.5, and PM10, and their relation to black carbon in Wuhan, Central China. Atmosphere, 6(9), 1377−1387, https://doi.org/10.3390/atmos6091377.
He, Y. J., I. Uno, Z. F. Wang, P. Pochanart, J. Li, and H. Akimoto, 2008: Significant impact of the east asia monsoon on ozone seasonal behavior in the boundary layer of eastern China and the west pacific region. Atmospheric Chemistry and Physics, 8, 7543−7555, https://doi.org/10.5194/acp-8-7543-2008.
Huang, Y. L., C. Liu, K. F. Zeng, L. Ding, and S. G. Cheng, 2015: Spatio-temporal distribution of PM2.5 in Wuhan and its relationship with meteorological conditionsin, 2013-2014. Ecology and Environmental Sciences, 24(8), 1330−1335, https://doi.org/10.16258/j.cnki.1674-5906.2015.08.011. (in Chinese with English abstract)
Kurokawa, J., T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-Maenhout, T. Fukui, K. Kawashima, and H. Akimoto, 2013: Emissions of air pollutants and greenhouse gases over Asian regions during 2000−2008: Regional emission inventory in Asia (REAS) version 2. Atmospheric Chemistry and Physics, 13(21), 11 019−11 058, https://doi.org/10.5194/acp-13-11019-2013.
Li, J., Z. F. Wang, H. Akimoto, C. Gao, P. Pochanart, and X. Q. Wang, 2007: Modeling study of ozone seasonal cycle in lower troposphere over east Asia. J. Geophys. Res., 112, D22S25, https://doi.org/10.1029/2006JD008209.
Li, J., and Coauthors, 2008: Near-ground ozone source attributions and outflow in central eastern China during MTX2006. Atmospheric Chemistry and Physics, 8(24), 7335−7351, https://doi.org/10.5194/acp-8-7335-2008.
Li, J., Z. F. Wang, and Q. Z. Wu, 2010: A Study of the quantitative diagnosis for the regional transport of tropospheric O3 concentrations. Climatic and Environmental Research, 15, 529−540, https://doi.org/10.3878/j.issn.1006-9585.2010.05.01. (in Chinese with English abstract)
Li, J., Z. Wang, G. Zhuang, G. Luo, Y. Sun, and Q. Wang, 2012: Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010. Atmospheric Chemistry and Physics, 12(16), 7591−7607, https://doi.org/10.5194/acp-12-7591-2012.
Li, J., and Coauthors, 2013: Assessing the effects of trans-boundary aerosol transport between various city clusters on regional haze episodes in spring over East China. Tellus B, 65(1), 20052, https://doi.org/10.3402/tellusb.v65i0.20052.
Li, J., and Coauthors, 2016: Modeling study of surface ozone source-receptor relationships in East Asia. Atmospheric Research, 167, 77−88, https://doi.org/10.1016/j.atmosres.2015.07.010.
Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065−1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Liu, J., Y. Q. Han, X. Tang, J. Zhu, and T. Zhu, 2016: Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Science of the Total Environment, 568, 1253−1262, https://doi.org/10.1016/j.scitotenv.2016.05.165.
Lu, M. M., and Coauthors, 2017: Source tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central China. Environmental Pollution, 231, 612−621, https://doi.org/10.1016/j.envpol.2017.08.046.
Lyu, X. P., N. Chen, H. Guo, L. W. Zeng, W. H. Zhang, F. Shen, J. H. Quan, and N. Wang, 2016: Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, Central China. Atmospheric Chemistry and Physics, 16(16), 10671−10687, https://doi.org/10.5194/acp-16-10671-2016.
Miao, Y. C., and S. H. Liu, 2019: Linkages between aerosol pollution and planetary boundary layer structure in China. Science of the Total Environment, 650, 288−296, https://doi.org/10.1016/j.scitotenv.2018.09.032.
Odum, J. R., T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld, 1997: The atmospheric aerosol-forming potential of whole gasoline vapor. Science, 276(5309), 96−99, https://doi.org/10.1126/science.276.5309.96.
Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka, 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics, 7(16), 4419−4444, https://doi.org/10.5194/acp-7-4419-2007.
Pandis, S. N., R. A. Harley, G. R. Cass, and J. H. Seinfeld, 1992: Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics, 26(13), 2269−2282, https://doi.org/10.1016/0960-1686(92)90358-R.
Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 20, 2949−2972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.
Shu, L., M. Xie, D. Gao, T. J. Wang, D. X. Fang, Q. Liu, A. N. Huang, and L. W. Peng, 2017: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 17(21), 12871−12891, https://doi.org/10.5194/acp-17-12871-2017.
Tang, X., and Coauthors, 2013: Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter. Atmos. Environ., 81, 676−686, https://doi.org/10.1016/j.atmosenv.2013.08.051.
Wagstrom, K. M., S. N. Pandis, G. Yarwood, G. M. Wilson, and R. E. Morris, 2008: Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model. Atmos. Environ., 42(22), 5650−5659, https://doi.org/10.1016/j.atmosenv.2008.03.012.
Walcek, C. J., and N. M. Aleksic, 1998: A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with FORTRAN code. Atmos. Environ., 32(22), 3863−3880, https://doi.org/10.1016/S1352-2310(98)00099-5.
Wang, N., Z. H. Ling, X. J. Deng, T. Deng, X. P. Lyu, T. Y. Li, X. R. Gao, and X. Chen, 2018a: Source contributions to PM2.5 under unfavorable weather conditions in Guangzhou City, China. Adv. Atmos. Sci., 35(9), 1145−1159, https://doi.org/10.1007/s00376-018-7212-9.
Wang, X. Y., R. E. Dickinson, L. Y. Su, C. L. Zhou, and K. C. Wang, 2018b: PM2.5 Pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Amer. Meteor. Soc., 99(1), 105−119, https://doi.org/10.1175/BAMS-D-16-0301.1.
Wang, Y. G., Q. Ying, J. L. Hu, and H. L. Zhang, 2014a: Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013−2014. Environment International, 73, 413−422, https://doi.org/10.1016/j.envint.2014.08.016.
Wang, Z. F., F. Y. Xie, X. Q. Wang, J. L. An, and J. Zhu, 2006: Development and application of nested air quality Prediction modeling system. Chinese Journal of Atmospheric Sciences, 30, 778−790, https://doi.org/10.3878/j.issn.1006-9895.2006.05.07. (in Chinese with English abstract)
Wang, Z. F., and Coauthors, 2014b: Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Science China Earth Sciences, 57(1), 3−13, https://doi.org/10.1007/s11430-013-4793-0.
Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23(6), 1293−1304, https://doi.org/10.1016/0004-6981(89)90153-4.
Wu, J. B., and Coauthors, 2017: Development of an on-line source-tagged model for sulfate, nitrate and ammonium: A modeling study for highly polluted periods in Shanghai, China. Environmental Pollution, 221, 168−179, https://doi.org/10.1016/j.envpol.2016.11.061.
Wu, Q. Z., Z. F. Wang, A. Gbaguidi, C. Gao, L. N. Li, and W. Wang, 2011: A numerical study of contributions to air pollution in Beijing during CAREBeijing-2006. Atmospheric Chemistry and Physics, 11(12), 5997−6011, https://doi.org/10.5194/acp-11-5997-2011.
Xie, Y. N., and Coauthors, 2015: Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. J. Geophys. Res., 120, 12679−12694, https://doi.org/10.1002/2015JD023607.
Xin, J. Y., and Coauthors, 2016: The observation-based relationships between PM2.5 and AOD over China. J. Geophys. Res., 121(18), 10701−10716, https://doi.org/10.1002/2015JD024655.
Yang, J. H., and K. Q. Duan, 2016: Effects of initial drivers and land use on WRF modeling for near-surface fields and atmospheric boundary layer over the northeastern Tibetan Plateau. Advances in Meteorology, 2016, 7849249, https://doi.org/10.1155/2016/7849249.
Ye, X. X., Y. Song, X. H. Cai, and H. S. Zhang, 2015: Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ., 124, 129−145, https://doi.org/10.1016/j.atmosenv.2015.06.011.
Zaveri, R. A., and L. K. Peters, 1999: A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res., 104(D23), 30387−30415, https://doi.org/10.1029/1999JD900876.
Zhang, F., Z. W. Wang, H. R. Cheng, X. P. Lv, W. Gong, X. M. Wang, and G. Zhang, 2015: Seasonal variations and chemical characteristics of PM2.5 in Wuhan, Central China. Science of the Total Environment, 518−519, 97−105, https://doi.org/10.1016/j.scitotenv.2015.02.054.
Zhang, X., Q. Zhang, C. P. Hong, Y. X. Zheng, G. N. Geng, D. Tong, Y. X. Zhang, and X. Y. Zhang, 2018: Enhancement of PM2.5 concentrations by aerosol-meteorology interactions over China. J. Geophys. Res., 123, 1179−1194, https://doi.org/10.1002/2017JD027524.
Zheng, B., and Coauthors, 2015a: Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry and Physics, 15, 2031−2049, https://doi.org/10.5194/acp-15-2031-2015.
Zheng, G. J., and Coauthors, 2015b: Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 15(6), 2969−2983, https://doi.org/10.5194/acp-15-2969-2015.
Zhong, M., E. Saikawa, V. Naik, L. W. Horowitz, M. Takigawa, and Y. Zhao, 2014: WRF-chem simulation of air quality in China: Sensitivity analyses of PM concentrations to emissions, atmospheric transport, and secondary organic aerosol formation. American Geophysical Union, Fall Meeting, American Geophysical Union, A13C-3187.
Zhou, Y., Y. Y. Yue, L. Li, M. Liu, and T. Zhou, 2016: Analysis of a serious haze event resulting from crop residue burning in central eastern Hubei. Climatic and Environmental Research, 21(2), 141−152, https://doi.org/10.3878/j.issn.1006-9585.2015.15109. (in Chinese with English abstract)