Ahn, E., Y. Huang, T. H. Chubb, D. Baumgardner, P. Isaac, M. de Hoog, S. T. Siems, and M. J. Manton, 2017: In situ observations of wintertime low-altitude clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 143, 1381−1394, https://doi.org/10.1002/qj.3011.
Ahn, E., Y. Huang, S. T. Siems, and M. J. Manton, 2018: A comparison of cloud microphysical properties derived from MODIS and CALIPSO with in situ measurements over the wintertime Southern Ocean. J. Geophys. Res., 123, 11 120--11 140,
Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 2888−2899, https://doi.org/10.1175/2009JAS2883.1.
Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteorol. Climatol., 45, 1282−1290, https://doi.org/10.1175/JAM2398.1.
Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410−414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.
Carey, L. D., J. G. Niu, P. Yang, J. A. Kankiewicz, V. E. Larson, and T. H. V. Haar, 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteorol. Climatol., 47, 2487−2495, https://doi.org/10.1175/2008JAMC1885.1.
Cober, S. G., G. A. Isaac, and J. W. Strapp, 2001: Characterizations of aircraft icing environments that include supercooled large drops. J. Appl. Meteorol. Climatol., 40, 1984−2002, https://doi.org/10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2.
Crosier, J., and Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmospheric Chemistry and Physics, 11, 257−273, https://doi.org/10.5194/acp-11-257-2011.
D'Alessandro, J. J., G. M. McFarquhar, W. Wu, J. L. Stith, J. B. Jensen, and R. M. Rauber, 2021: Characterizing the occurrence and spatial heterogeneity of liquid, ice, and mixed phase low-level clouds over the southern ocean using in situ observations acquired during SOCRATES. J. Geophys. Res., 126, e2020JD034482, https://doi.org/10.1029/2020JD034482.
Faber, S., J. R. French, and R. Jackson, 2018: Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP). Atmospheric Meas. Tech., 11, 3645−3659, https://doi.org/10.5194/amt-11-3645-2018.
Fleishauer, R. P., V. E. Larson, and T. H. V. Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, 1779−1804, https://doi.org/10.1175/1520-0469(2002)059<1779:OMSOMM>2.0.CO;2.
French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci., 115, 1168−1173, https://doi.org/10.1073/pnas.1716995115.
Friedrich, K., and Coauthors, 2020: Quantifying snowfall from orographic cloud seeding. Proc. Natl. Acad. Sci., 117, 5190−5195, https://doi.org/10.1073/pnas.1917204117.
Gultepe, I., and G. A. Isaac, 2004: Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc., 130, 2377−2390, https://doi.org/10.1256/qj.03.120.
Gultepe, I., G. A. Isaac, and S. G. Cober, 2002: Cloud microphysical characteristics versus temperature for three Canadian field projects. Ann. Geophys., 20, 1891−1898, https://doi.org/10.5194/angeo-20-1891-2002.
Guo, X. L., D. H. Fu, X. Y. Li, Z. X. Hu, H. C. Lei, H. Xiao, and Y. C. Hong, 2015: Advances in cloud physics and weather modification in China. Adv. Atmos. Sci., 32, 230−249, https://doi.org/10.1007/s00376-014-0006-9.
Heymsfield, A. J., and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteorol. Climatol., 17, 1566−1572, https://doi.org/10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2.
Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 3303−3318, https://doi.org/10.1175/2010JAS3507.1.
Hou, T. J., H. C. Lei, Y. J. He, J. F. Yang, Z. Zhao, and Z. X. Hu, 2021: Aircraft measurements of the microphysical properties of stratiform clouds with embedded convection. Adv. Atmos. Sci., 38, 966−982, https://doi.org/10.1007/s00376-021-0287-8.
Hu, Y. X., S. Rodier, K.-M. Xu, W. B. Sun, J. P. Huang, B. Lin, P. W. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, https://doi.org/10.1029/2009JD012384.
Huang, Y., S. T. Siems, and M. J. Manton, 2021: Wintertime in situ cloud microphysical properties of mixed-phase clouds over the Southern Ocean. J. Geophys. Res., 126, e2021JD034832, https://doi.org/10.1029/2021JD034832.
Huo, J., Y. Tian, X. Wu, C. Han, B. Liu, Y. Bi, S. Duan, and D. Lyu, 2020: Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017. Atmospheric Chem. Phys., 20, 14 377–1 4392,
Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, https://doi.org/10.1029/2012JD017668.
Jensen, E. J., R. P. Lawson, J. W. Bergman, L. Pfister, T. P. Bui, and C. G. Schmitt, 2013: Physical processes controlling ice concentrations in synoptically forced, midlatitude cirrus. J. Geophys. Res. Atmospheres, 118, 5348−5360, https://doi.org/10.1002/jgrd.50421.
Korolev, A., 2007a: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 3372−3375, https://doi.org/10.1175/JAS4035.1.
Korolev, A., 2007b: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376−389, https://doi.org/10.1175/JTECH1980.1.
Korolev, A., J. W. Strapp, G. A. Isaac, and E. Emery, 2013: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 2121−2131, https://doi.org/10.1175/JTECH-D-13-00007.1.
Korolev, A., and Coauthors, 2017: Mixed-phase clouds: progress and challenges. Meteor. Monogr., 58, 5.1−5.50, https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1.
Korolev, A. V., G. A. Isaac, I. P. Mazin, and H. W. Barker, 2001: Microphysical properties of continental clouds from in situ measurements. Quart. J. Roy. Meteor. Soc., 127, 2117−2151, https://doi.org/10.1002/qj.49712757614.
Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 39−65, https://doi.org/10.1256/qj.01.204.
Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small Ice Particles in Tropospheric Clouds: Fact or Artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Am. Meteorol. Soc., 92, 967−973, https://doi.org/10.1175/2010BAMS3141.1.
Lachlan-Cope, T., C. Listowski, and S. O'Shea, 2016: The microphysics of clouds over the Antarctic Peninsula - Part 1: Observations. Atmospheric Chemistry and Physics, 16, 15 605−15 617,
Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmospheric Measurement Techniques, 3, 1683−1706, https://doi.org/10.5194/amt-3-1683-2010.
Lawson, R. P., B. A. Baker, P. Zmarzly, D. O'Connor, Q. X. Mo, J.-F. Gayet, and V. Shcherbakov, 2006a: Microphysical and optical properties of atmospheric ice crystals at South Pole station. J. Appl. Meteorol. Climatol., 45, 1505−1524, https://doi.org/10.1175/JAM2421.1.
Lawson, R. P., D. O'Connor, P. Zmarzly, K. Weaver, B. Baker, Q. X. Mo, and H. Jonsson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 1462−1477, https://doi.org/10.1175/JTECH1927.1.
Liang, X., and Coauthors, 2018: SURF: Understanding and predicting urban convection and haze. Bull. Amer. Meteor. Soc., 99, 1391−1413, https://doi.org/10.1175/BAMS-D-16-0178.1.
Lloyd, G., and Coauthors, 2018: In situ measurements of cloud microphysical and aerosol properties during the break-up of stratocumulus cloud layers in cold air outbreaks over the North Atlantic. Atmospheric Chemistry and Physics, 18, 17 191−17 206,
Lohmann, U., J. Henneberger, O. Henneberg, J. P. Fugal, J. Bühl, and Z. A. Kanji, 2016: Persistence of orographic mixed-phase clouds. Geophys. Res. Lett., 43, 10 512−10 519,
Ma, X. C., K. Bi, Y. B. Chen, Y. C. Chen, and Z. G. Cheng, 2017: Characteristics of winter clouds and precipitation over the mountains of northern Beijing. Advances in Meteorology, 2017, 3536107, https://doi.org/10.1155/2017/3536107.
Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823−1842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.
Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.
Noh, Y.-J., C. J. Seaman, T. H. V. Haar, D. R. Hudak, and P. Rodriguez, 2011: Comparisons and analyses of aircraft and satellite observations for wintertime mixed-phase clouds. J. Geophys. Res., 116, D18207, https://doi.org/10.1029/2010JD015420.
Noh, Y.-J., C. J. Seaman, T. H. V. Haar, and G. S. Liu, 2013: In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. J. Appl. Meteorol. Climatol., 52, 269−279, https://doi.org/10.1175/JAMC-D-11-0202.1.
O'Shea, S. J., and Coauthors, 2017: In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign. Atmospheric Chemistry and Physics, 17, 13 049−13 070,
Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 4181−4203, https://doi.org/10.1175/JAS-D-14-0100.1.
Quan, J. N., and X. C. Jia, 2020: Review of aircraft measurements over China: Aerosol, atmospheric photochemistry, and cloud. Atmospheric Research, 243, 104972, https://doi.org/10.1016/j.atmosres.2020.104972.
Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639−673, https://doi.org/10.1256/qj.04.13.
Storelvmo, T., 2017: Aerosol effects on climate via mixed-phase and ice clouds. Annual Review of Earth and Planetary Sciences, 45, 199−222, https://doi.org/10.1146/annurev-earth-060115-012240.
Taylor, J. W., and Coauthors, 2016: Observations of cloud microphysics and ice formation during COPE. Atmospheric Chemistry and Physics, 16, 799−826, https://doi.org/10.5194/acp-16-799-2016.
Wang, J. Y., X. Q. Dong, and B. K. Xi, 2015: Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site. J. Geophys. Res., 120, 3533−3552, https://doi.org/10.1002/2014JD022795.
Wang, Y., and Coauthors, 2020: Microphysical properties of generating cells over the Southern Ocean: Results from SOCRATES. J. Geophys. Res., 125, e2019JD032237, https://doi.org/10.1029/2019JD032237.
Yang, J. F., and H. C. Lei, 2016: In situ observations of snow particle size distributions over a cold frontal rainband within an extratropical cyclone. Asia-Pacific Journal of Atmospheric Sciences, 52, 51−62, https://doi.org/10.1007/s13143-015-0089-y.
Young, G., and Coauthors, 2016: Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean. Atmospheric Chemistry and Physics, 16, 13 945−13 967,
Yum, S. S., and J. G. Hudson, 2001: Microphysical relationships in warm clouds. Atmospheric Research, 57, 81−104, https://doi.org/10.1016/S0169-8095(00)00099-5.
Yum, S. S., and J. G. Hudson, 2004: Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean. J. Geophys. Res., 109, D06204, https://doi.org/10.1029/2003JD003864.
Zhao, C. F., Y. M. Qiu, X. B. Dong, Z. E. Wang, Y. R. Peng, B. D. Li, Z. H. Wu, and Y. Wang, 2018: Negative aerosol-cloud re relationship from aircraft observations over Hebei, China. Earth and Space Science, 5, 19−29, https://doi.org/10.1002/2017EA000346.
Zhao, Z., and H. C. Lei, 2014: Aircraft observations of liquid and ice in midlatitude mixed-phase clouds. Adv. Atmos. Sci., 31, 604−610, https://doi.org/10.1007/s00376-013-3083-2.
Zhu, S. C., X. L. Guo, G. X. Lu, and L. J. Guo, 2015: Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in Northern China. J. Atmos. Sci., 72, 2011−2032, https://doi.org/10.1175/JAS-D-14-0194.1.