Atlas, D., and C. W. Ulbrich, 2000: An observationally based conceptual model of warm oceanic convective rain in the tropics. J. Appl. Meteorol., 39, 2165−2181, https://doi.org/10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2.
Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1−35, https://doi.org/10.1029/RG011i001p00001.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354−365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
Cao, Q., G. F. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47(8), 2238−2255, https://doi.org/10.1175/2008JAMC1732.1.
Chandrasekar, V., W. Y. Li, and B. Zafar, 2005: Estimation of raindrop size distribution from spaceborne radar observations. IEEE Trans. Geosci. Remote Sens., 43(5), 1078−1086, https://doi.org/10.1109/TGRS.2005.846130.
Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chinese Science Bulletin, 61(15), 1706−1720, https://doi.org/10.1360/N972015-01292.
Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91(2), 215−227, https://doi.org/10.2151/jmsj.2013-208.
Chen, B. J., J. Wang, and D. L. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteor. Climatol., 55, 621−634, https://doi.org/10.1175/JAMC-D-15-0127.1.
Chen, B. J., Z. Q. Hu, L. P. Liu, and G. F. Zhang, 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res., 122, 11 092−11 106, https://doi.org/10.1002/2017JD027233.
Chen, P., and B. Li, 2018: Characteristics of water vapor transport and its influence in Southeast Tibet. South China Agriculture, 12, 124−125, https://doi.org/10.19415/j.cnki.1673-890x.2018.09.066. (in Chinese)
Cifelli, R., V. Chandrasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Ocean. Technol., 28, 352−364, https://doi.org/10.1175/2010JTECHA1488.1.
Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary modes of global drop size distributions. J. Atmos. Sci., 75, 1453−1476, https://doi.org/10.1175/JAS-D-17-0242.1.
Fabry, F., I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838−851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.
Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Ocean. Technol., 30, 2063−2080, https://doi.org/10.1175/JTECH-D-12-00254.1.
Fu, Y. F., H. T. Li, and Y. Zi, 2007: Case study of precipitation cloud structure viewed by TRMM satellite in a valley of the Tibetan Plateau. Plateau Meteorology, 26, 98−106, https://doi.org/10.3321/j.issn:1000-0534.2007.01.012. (in Chinese with English abstract
Fulton, R. A., J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377−395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.
Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610−2627, https://doi.org/10.1175/MWR2810.1.
Gossard, E. E., R. O. Strauch, and R. R. Rogers, 1990: Evolution of dropsize distributions in liquid precipitation observed by ground-based Doppler radar. J. Atmos. Ocean. Technol., 7, 815−828, https://doi.org/10.1175/1520-0426(1990)007<0815:EODDIL>2.0.CO;2.
Huo, Z. Y., Z. Ruan, M. Wei, R. S. Ge, F. Li, and Y. Ruan, 2019: Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmospheric Research, 222, 47−61, https://doi.org/10.1016/j.atmosres.2019.01.022.
Jaffrain, J., and A. Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeor., 12, 352−370, https://doi.org/10.1175/2010JHM1244.1.
Ji, L., H. N. Chen, L. Li, B. J. Chen, X. Xiao, M. Chen, and G. F. Zhang, 2019: Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, northern China. Remote Sensing, 11, 1479, https://doi.org/10.3390/rs11121479.
Kang, S. C., Y. W. Xu, Q. L. You, W. A. Flügel, N. Pepin, and T. D. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1), 015101, https://doi.org/10.1088/1748-9326/5/1/015101.
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Ocean. Technol., 8, 259−271, https://doi.org/10.1175/1520-0426(1991)008<0259:RPEFDR>2.0.CO;2.
Krajewski, W. F., and Coauthors, 2006: DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Advances in Water Resources, 29, 311−325, https://doi.org/10.1016/j.advwatres.2005.03.018.
Krishna, U. V. M., K. K. Reddy, B. K. Seela, R. Shirooka, and P. L. Lin, 2016: Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the Western Pacific Ocean. Atmospheric Research, 174−175, 41−51, https://doi.org/10.1016/j.atmosres.2016.01.013.
Lam, H. Y., J. Din, and S. L. Jong, 2015: Statistical and physical descriptions of raindrop size distributions in equatorial Malaysia from disdrometer observations. Advances in Meteorology, 2015, 253730, https://doi.org/10.1155/2015/253730.
Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteor. Soc., 86, 225−233, https://doi.org/10.1175/BAMS-86-2-225.
Lee, C. K., and I. Zawadzki, 2005: Variability of drop size distributions: Time‐scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241−255, https://doi.org/10.1175/JAM2183.1.
Li, D., A. J. Bai, Y. J. Xue, et al., 2014: Comparative analysis on characteristics of summer convective precipitation over Tibetan Plateau and Sichuan Basin. Meteorological Monthly, 40, 280−289, https://doi.org/10.7519/j.issn.1000-0526.2014.03.003. (in Chinese with English abstract
Li, J., 2018: Hourly station-based precipitation characteristics over the Tibetan Plateau. International Journal of Climatology, 38, 1560−1570, https://doi.org/10.1002/joc.5281.
List, R., N. R. Donaldson, and R. E. Stewart, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci., 44, 362−372, https://doi.org/10.1175/1520-0469(1987)044<0362:TEODST>2.0.CO;2.
Liu, L. P., J. M. Feng, R. Z. Chu, Y. J. Zhou, and K. Ueno, 2002: The diurnal variation of precipitation in monsoon season in the Tibetan Plateau. Adv. Atmos. Sci., 19(2), 365−378, https://doi.org/10.1007/s00376-002-0028-6.
Liu, L. P., J. F. Zheng, Z. Ruan, Z. H. Cui, Z. Q. Hu, S. H. Wu, G. Y. Dai, and Y. H. Wu, 2015: The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the vavious radars. Acta Meteorologica Sinica, 74(4), 635−647, https://doi.org/10.11676/qxxb2015.041. (in Chinese with English abstract
Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40(8), 1393−1412, https://doi.org/10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2.
McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol, 416−417, 182−205, https://doi.org/10.1016/j.jhydrol.2011.10.024.
Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051−3064, https://doi.org/10.1175/JAS3534.1.
Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287−311, https://doi.org/10.1175/JAS-D-14-0065.1.
Niu, S. J., X. C. Jia, J. R. Sang, X. L. Liu, C. S. Lu, and Y. G. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632−645, https://doi.org/10.1175/2009JAMC2208.1.
Porcù, F., L. P. D’Adderio, F. Prodi, and C. Caracciolo, 2014: Rain drop size distribution over the Tibetan Plateau. Atmospheric Research, 150, 21−30, https://doi.org/10.1016/j.atmosres.2014.07.005.
Rao, T. N., B. Radhakrishna, K. Nakamura, and N. P. Rao, 2009: Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki. Quart. J. Roy. Meteor. Soc., 135, 1630−1637, https://doi.org/10.1002/qj.432.
Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, R. M. Wakimoto and R. Srivastava, Eds., Springer, 237−258,
Smith, P. L., 2003: Raindrop size distributions: Exponential or gamma-does the difference matter. J. Appl. Meteor., 42, 1031−1034, https://doi.org/10.1175/1520-0450(2003)042<1031:RSDEOG>2.0.CO;2.
Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410−415, https://doi.org/10.1175/1520-0469(1971)028<0410:SDORGB>2.0.CO;2.
Steiner, M., and A. Waldvogel, 1987: Peaks in Raindrop size distributions. J. Atmos. Sci., 44, 3127−3133, https://doi.org/10.1175/1520-0469(1987)044<3127:PIRSD>2.0.CO;2.
Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 1114−1131, https://doi.org/10.1175/1520-0469(2004)061<1114:AMIORR>2.0.CO;2.
Tang, Q., H. Xiao, C. W. Guo, and L. Feng, 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmospheric Research, 135−136, 59−75, https://doi.org/10.1016/j.atmosres.2013.08.003.
Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40(6), 1118−1140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.
Thompson, E. J., S. A. Rutledge, B. Dolan, and M. Thurai, 2015: Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. J. Atmos. Sci., 72, 4091−4125, https://doi.org/10.1175/JAS-D-14-0206.1.
Thurai, M., V. N. Bringi, and P. T. May, 2010: CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia. J. Atmos. Ocean. Technol., 27, 932−942, https://doi.org/10.1175/2010JTECHA1349.1.
Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355−371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.
Tokay, A., P. G. Bashor, E. Habib, and T. Kasparis, 2008: Raindrop size distribution measurements in tropical cyclones. Mon. Wea. Rev., 136(5), 1669−1685, https://doi.org/10.1175/2007MWR2122.1.
Tokay, A., W. A. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol., 30, 1672−1690, https://doi.org/10.1175/JTECH-D-12-00163.1.
Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology. Hydrology and Earth System Sciences, 5, 615−627, https://doi.org/10.5194/hess-5-615-2001.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764−1775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.
Ulbrich, C. W., and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 1777−1791, https://doi.org/10.1175/2007JAMC1649.1.
Wan, B. C., Z. Q. Gao, F. Chen, and C. G. Lu, 2017: Impact of Tibetan Plateau surface heating on persistent extreme precipitation events in southeastern China. Mon. Wea. Rev., 145(9), 3485−3505, https://doi.org/10.1175/MWR-D-17-0061.1.
Wang, D. H., J. F. Yin, and G. Q. Zhai, 2015: In-situ measurements of cloud‐precipitation microphysics in the East Asian monsoon region since 1960. J. Meteor. Res., 29, 155−179, https://doi.org/10.1007/s13351-015-3235-7.
Wang, M. Y., 2019: Effects of synoptic weather patterns and pollution on microphysical characteristics of precipitation in East and South China during warm season. M.S. thesis, Nanjing University.
Wen, L., K. Zhao, G. F. Zhang, M. Xue, B. W. Zhou, S. Liu, and X. C. Chen, 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res., 121, 2265−2282, https://doi.org/10.1002/2015JD024160.
Wen, L., K. Zhao, G. F. Zhang, S. Liu, and G. Chen, 2017: Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-Yu season in East China. J. Atmos. Ocean. Technol., 34, 1021−1037, https://doi.org/10.1175/JTECH-D-16-0225.1.
Wu, Y. H., and L. P. Liu, 2017: Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci., 34, 727−736, https://doi.org/10.1007/s00376-016-5235-7.
Wu, Z. H., Y. Zhang, L. F. Zhang, H. C. Lei, Y. Q. Xie, L. Wen, and J. F. Yang, 2019: Characteristics of summer season raindrop size distribution in three typical regions of western Pacific. J. Geophys. Res., 124, 4054−4073, https://doi.org/10.1029/2018JD029194.
Xu, X. D., C. G. Lu, X. H. Shi, and S. T. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35(20), L20815, https://doi.org/10.1029/2008GL035867.
Xu, X. D., T. L. Zhao, C. G. Lu, and X. H. Shi, 2014: Characteristics of the water cycle in the atmosphere over the Tibetan Plateau. Acta Meteorologica Sinica, 72(6), 1079−1095, https://doi.org/10.11676/qxxb2014.091. (in Chinese with English abstract
Xu, X. D., T. L. Zhao, X. H. Shi, and C. G. Lu, 2015: A study of the role of the Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China. Acta Meteorologica Sinica, 73(1), 20−35, https://doi.org/10.11676/qxxb2014.051. (in Chinese with English abstract
Yang, Y. C., D. Y. Gao, and B. S. Li, 1987: Preliminary study of water vapor pass along the downstream of Yarlung Zangbo. Scientia Sinica B, 17(8), 893−902, https://doi.org/10.1360/zb1987-17-8-893. (in Chinese)
Yuter, S. E., and R. A. Houze Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for ZR relations. J. Appl. Meteor., 36(7), 847−867, https://doi.org/10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.
Yuter, S. E., D. E. Kingsmill, L. B. Nance, and M. Löffler-Mang, 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 1450−1464, https://doi.org/10.1175/JAM2406.1.
Zeng, Q. W., Y. Zhang, H. C. Lei, Y. Q. Xie, T. C. Gao, L. F. Zhang, C. M. Wang, and Y. B. Huang, 2019: Microphysical characteristics of precipitation during pre-monsoon, monsoon, and post-monsoon periods over the South China Sea. Adv. Atmos. Sci., 36(10), 1103−1120, https://doi.org/10.1007/s00376-019-8225-8.
Zeng, Y. T., Y. Zhang, K. Zhou, Y. Q. Yao, and L. F. Yang, 2020: Analysis on the source and transport characteristics of moisture in Naqu of the Qinghai-Tibetan Plateau in summer. Plateau Meteorology, 39(3), 467−476, https://doi.org/10.7522/j.issn.1000-0534.2019.00120. (in Chinese with English abstract
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39(4), 830−841, https://doi.org/10.1109/36.917906.
Zhang, G. F., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information. J. Atmos. Ocean. Technol., 20, 1106−1119, https://doi.org/10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2.
Zhang, W. X., L. X. Zhang, and T. J. Zhou, 2016: Interannual variability and the underlying mechanism of summer precipitation over the Yarlung Zangbo River basin. Chinese Journal of Atmospheric Sciences, 40(5), 965−980, https://doi.org/10.3878/j.issn.1006-9895.1512.15205. (in Chinese with English abstract
Zhao, P., and Coauthors, 2018: The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Scientific Experiment. Acta Meteorologica Sinica, 76(6), 833−860, https://doi.org/10.11676/qxxb2018.060. (in Chinese with English abstract
Zhao, P., and Coauthors, 2019: The Tibetan Plateau surface- atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau atmospheric science experiment. J. Meteor. Res., 33, 375−399, https://doi.org/10.1007/s13351-019-8602-3.