Acker J. G., G. Leptoukh, 2007: Online analysis enhances use of NASA Earth science data. Eos, Trans. Amer. Geophys.Union, 88( 2), 14- 17.
Ackerman S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103( D24), 32141- 32157.
Adams P. J., J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res.: Atmos.,107(D19), AAC 4-1-AAC 4- 23.
Arakawa A., W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the Large-Scale environment, Part I. J.Atmos. Sci., 31( 3), 674- 701.
Barnes W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36( 4), 1088- 1100.
Bi J. R., J. P. Huang, Q. Fu, X. Wang, J. S. Shi, W. Zhang, H. W. Huang, and B. D. Zhang, 2011: Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China. Journal of Quantitative Spectroscopy and Radiative Transfer, 112( 2), 346- 360.
Chand D.., Coauthors, 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res.: Atmos. , 117(D17),D17207, doi:10.1029/2012JD017894.
Chin M., Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59( 3), 461- 483.
Chin M., T. Diehl, O. Dubovik, T. F. Eck, B. N. Holben, A. Sinyuk, and D. G. Streets.2009: Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with AERONET measurements. Ann. Geophys., 27, 3439- 3464.
Chin M. Coauthors, 2014: Multi-decadal aerosol variations from 1980 to 2009: A perspective from observations and a global model. Atmospheric Chemistry and Physics, 14( 7), 3657- 3690.
Chung C. E., V. Ramanathan, and D. Decremer, 2012: Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, 109( 29), 11624- 11629.
Colarco P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophy. Res.: Atmos., 115(D14),D14207, doi: 10.1029/2009JD012820.
Cooke W. F., J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101( D14), 19 395- 19 409.
Dai T., N. A. J. Schutgens, and T. Nakajima, 2013: Applying a local Ensemble transform Kalman filter assimilation system to the NICAM-SPRINTARS model. AIP Conference Proceedings, 1531( 1), 744- 747.
Dai T., D. Goto, N. A. J. Schutgens, X. Dong, G. Shi, and T. Nakajima, 2014a: Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmos. Enviro., 82, 71- 82.
Dai T., N. A. J. Schutgens, D. Goto, G. Shi, and T. Nakajima, 2014b: Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model. Environmental Pollution, 195, 319- 329.
Diehl T., A. Heil, M. Chin, X. Pan, D. Streets, M. Schultz, and S. Kinne, 2012: Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmospheric Chemistry and Physics Discussions, 12( 9), 24 895- 24 954.
Dubovik O., M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105( D16), 20 673- 20 696.
Dubovik O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, 2000: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res., 105( D8), 9791- 9806.
Geleyn J. F., A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr. Phys. Atmos., 52, 1- 16.
Goto D., T. Nakajima, T. Takemura, and K. Sudo, 2011a: A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model. Atmos. Chem. Phys., 11( 21), 10 889- 10 910.
Goto D., N. A. J. Schutgens, T. Nakajima, and T. Takemura, 2011b: Sensitivity of aerosol to assumed optical properties over Asia using a global aerosol model and AERONET. Geophys. Res. Lett., 38(17),L17810, doi: 10.1029/2011GL 048675.
Goto D., S. Kanazawa, T. Nakajima, and T. Takemura, 2012: Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation. Atmos. Environ., 49, 294- 301.
Holben, B., Coauthors, 1998: AERONET——A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66( 1), 1- 16.
Kampa M., E. Castanas, 2008: Human health effects of air pollution. Environmental Pollution, 151( 2), 362- 367.
Kaufman Y. J., D. Tanr\'e L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res.: Atmos. , 102( D14), 17 051- 17 067.
King M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote sensing of cloud,aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30( 1), 2- 27.
King M.D., Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41( 2), 442- 458.
Kinne S., Coauthors, 2003: Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. J. Geophys. Res.: Atmos. , 108(D20),4634, doi:10.1029/2001JD001253.
Kinne S. ,Coauthors, 2006: An AeroCom initial assessment-optical properties in aerosol component modules of global models. Atmos. Chem. Phys. , 6( 7), 1815- 1834.
Le Trent, H., Z.-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5( 3), 175- 187.
Lee L. A., K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw, 2013: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmospheric Chemistry and Physics, 13( 17), 8879- 8914.
Lee Y. H., P. J. Adams, 2010: Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations. Atmospheric Chemistry and Physics, 10( 5), 2129- 2214.
Levy R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6( 11), 2989- 3034.
Logan T., B. Xi, X. Dong, R. Obrecht, Z. Li, and M. Cribb, 2010: A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment. J. Geophys. Res., 115,D00K25, doi: 10.1029/2010JD014134.
Logan T., B. Xi, X. Dong, Z. Li, and M. Cribb, 2013: Classification and investigation of Asian aerosol absorptive properties. Atmospheric Chemistry and Physics, 13( 4), 2253- 2265.
Lohmann U., Coauthors, 2010: Total aerosol effect: radiative forcing or radiative flux perturbation? Atmospheric Chemistry and Physics, 10( 7), 3235- 3246.
Mann G.W., Coauthors, 2014: Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 14( 9), 4679- 4713.
Martins J. V., D. Tanr\'e L. Remer, Y. Kaufman, S. Mattoo, and R. Levy, 2002: MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett.,29(12), MOD4-1-MOD4-4.
Mellor G. L., T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31( 7), 1791- 1806.
Miura H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global Cloud-Resolving model. Science, 318( 5857), 1763- 1765.
Nakajima T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39( 27), 4869- 4878.
Niwa Y., Coauthors, 2011a: Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations. Atmospheric Chemistry and Physics, 11( 24), 13359- 13375.
Niwa Y., H. Tomita, M. Satoh, and R. Imasu, 2011b: A three-dimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport. J. Meteor. Soc.Japan, 89( 3), 255- 268.
Peng Y., K. von Salzen, and J. Li, 2012: Simulation of mineral dust aerosol with Piecewise Log-normal Approximation (PLA) in CanAM4-PAM. Atmospheric Chemistry and Physics, 12( 15), 6891- 6914.
Prados A. I., S. Kondragunta, P. Ciren, and K. R. Knapp, 2007: GOES Aerosol/Smoke Product (GASP) over North America: Comparisons to AERONET and MODIS observations. J. Geophys. Res.: Atmos., 112(D15),D15201, doi: 10.1029/2006JD007968.
Remer L. A., Y. J. Kaufman, 2006: Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. Atmospheric Chemistry and Physics, 6( 1), 237- 253.
Remer L.A., Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J.Atmos. Sci., 62( 4), 947- 973.
Ridley D. A., C. L. Heald, and B. Ford, 2012: North African dust export and deposition: A satellite and model perspective. J. Geophys. Res., 117(D2),D02202, doi: 10.1029/2011JD 016794.
Salomonson V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27( 2), 145- 153.
Satoh M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227( 7), 3486- 3514.
Seiki T., T. Nakajima, 2014: Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71( 2), 833- 853.
Seiki T., M. Satoh, H. Tomita, and T. Nakajima, 2014: Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations. J. Geophys. Res.: Atmos., 119( 11), 6681- 6701.
Sekiguchi M., T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. Journal of Quantitative Spectroscopy and Radiative Transfer, 109( 17-18), 2779- 2793.
Su L., O. B. Toon, 2011: Saharan and Asian dust: Similarities and differences determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical model. Atmos. Chem. Phys., 11( 7), 3263- 3280.
Sudo K., M. Takahashi, J.-i. Kurokawa, and H. Akimoto, 2002: CHASER: A global chemical model of the troposphere 1. Model description. J. Geophys. Res.,107(D17), ACH 7-1-ACH 7- 20.
Suzuki K., T. Nakajima, M. Satoh, H. Tomita, T. Takemura, T. Y. Nakajima, and G. L. Stephens, 2008: Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys. Res. Lett. , 35(19),L19817, doi:10.1029/2008GL 035449.
Takata K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global and Planetary Change, 38( 1-2), 209- 222.
Takemura T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105( D14), 17 853- 17 873.
Takemura T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002a: Single-scattering albedo and radiative forcing of various aerosol species with a global Three-Dimensional model. J.Climate, 15( 4), 333- 352.
Takemura T., I. Uno, T. Nakajima, A. Higurashi, and I. Sano, 2002b: Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia. Geophys. Res. Lett.,l29(24), 11-1-11-4.
Takemura T., M. Egashira, K. Matsuzawa, H. Ichijo, R. O'Ishi, and A. Abe-Ouchi, 2009: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmospheric Chemistry and Physics, 9( 9), 3061- 3073.
Tanr\'e D., Y. J. Kaufman, M. Herman, S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res., 102( D14), 16 971- 16 988.
Taylor K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106( D7), 7183- 7192.
Textor C., Coauthors, 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6( 7), 1777- 1813.
Textor C., Coauthors, 2007: The effect of harmonized emissions on aerosol properties in global models-an AeroCom experiment. Atmospheric Chemistry and Physics, 7( 17), 4489- 4501.
Tomita H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan Ser.II, 86A, 121- 142.
Twomey S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8( 12), 1251- 1256.
Wang X., J. Huang, M. Ji, and K. Higuchi, 2008: Variability of East Asia dust events and their long-term trend. Atmos. Environ., 42( 13), 3156- 3165.
Yang Y. Q., Q. Hou, C. H. Zhou, H. L. Liu, Y. Q. Wang, and T. Niu, 2008: Sand/dust storm processes in Northeast Asia and associated large-scale circulations. Atmospheric Chemistry and Physics, 8( 1), 25- 33.
Zhang H., Coauthors, 2012a: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dyn., 38( 7-8), 1675- 1693.
Zhang K., Coauthors, 2012b: The global aerosol-climate model ECHAM-HAM, version 2: Sensitivity to improvements in process representations. Atmospheric Chemistry and Physics, 12( 19), 8911- 8949.