Biggerstaff M. I., R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10-11 June 1985 squall line. Mon. Wea. Rev., 119, 3034- 3065.
Biggerstaff M. I., R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10-11 June 1985 suqall line. J. Atmos. Sci., 50, 3091- 3110.
Bosart L. F., J. P. Cussene, 1986: Mesoscale structure in the megalopolitan snowstorm of 11-12 February 1983 Part III: A large-amplitude gravity wave. J. Atmos. Sci., 43, 924- 939.
Braun S. A., R. A. Houze Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51, 2733- 2755.
Brown J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313- 338.
Browning K. A., F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117- 135.
Bryan G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory's relevance to squall-line characteristics. Mon. Wea. Rev., 134, 2772- 2792.
Cahn A.Jr, 1945: An investigation of the free oscillations of a simple current system. J. Meteor. , 2, 113- 119.
Cai Z. Y., H. Z. Li, and H. A. Li, 1988: Structure and evolution of squall line systems in North China. Chinese J. Atmos. Sci., 12, 191- 199. (in Chinese)
Chen M. X., Y. C. Wang, 2012: Numerical simulation study of interactional effects of the low level vertical wind shear with the cold pool on a squall line evolution in North China. Acta Meteorologica Sinica, 70, 371- 386. (in Chinese)
Curry M. J., R. C. Murty, 1974: Thunderstorm-generated gravity waves.. J. Atmos. Sci, 31, 1402- 1408.
Davis C. A., K. A. Emanuel, 1991: Potential vorticity diagnosis of cyclogenesis. Mon. Wea. Rev., 119, 1929- 1952.
Fovell R. G., Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846- 3879.
Fovell R. G., 2002: Upstream influence of numerically simulated squall line storms. Quart. J. Roy. Meteor. Soc., 128, 893- 912.
Fovell R. G., Y. Ogura, 1989: Effects of vertical wind shears on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 3144- 3176.
Fritsch J. M., C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems, Part I: Convective parameterization. J. Atmos. Sci., 37, 1722- 1733.
Fujita T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405- 436.
Gallus W. A., Jr., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101- 113.
Gao S. T., X. R. Wang, and Y. S. Zhou, 2004: Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow. Geophys. Res. Lett.,31, doi: 10.1029/2003GL 019152.
Gao S. T., Y. Zhou, T. Lei, and J. Sun, 2005: Analyses of hot and humid weather in Beijing city in summer and its dynamical identification. Science China Earth Sciences, 48, 128- 137.
Gao S. T., S. Yang, and B. Chen, 2010: Diagnostic analyses of dry intrusion and nonuniformly saturated instability during a rainfall event. J. Geophys. Res.: Atmos. ,115(D2), doi:10.1029/2009JD012467.
Gong X. L., Z. M. Wu, and G. Fu, 2005: Analysis of the mesoscale characteristics about a severe thunderstorm in North China. Chinese J. Atmos. Sci., 29, 453- 464. (in Chinese)
He Q. Q., H. C. Lu, and M. Zhang, 1992: A mesoscale study of squall line in warm sec-tor of Jiang-Huai area. Acta Meteorologica Sinica, 50, 290- 300. (in Chinese)
Houze, R. A., Jr, M. I. Biggerstaff, S. A. Rutledge, B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc. 70, 608- 619.
Howard L. N., 1961: Note on paper of John W. Miles. J. Fluid Mech., 10, 509- 512.
Johnson R. H., P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and the airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444- 1472.
Kaplan M. L., V. M. Karyampudi, 1992: Meso-bata scale numerical simulations of terrain drag-induced along-stream circulations. Part II: Concentration of potential vorticity within dryline bulges. Meteor. Atmos. Phys., 49, 157- 185.
Koch S. E., P. B. Dorian, 1988: A mesoscale gravity wave event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Mon. Wea. Rev., 116, 2570- 2592.
Koch, S. E., Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 3885- 3908.
Lafore J. P., M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521- 544.
LeMone M. A., 1983: Momentum flux by a line of cumulonimbus. J. Atmos. Sci., 40, 1815- 1834.
Li M. C., 1976: The nonlinear process of squall line formation. Science China (A), 6, 592- 601. (in Chinese)
Li M. C., 1978: The role of gravity wave in torrential rain. Chinese J. Atmos. Sci., 2, 201- 209. (in Chinese)
Li M. C., 1981: The nonlinear process of squall line formation and KDV equation. Science China, 3, 341- 350. (in Chinese)
Mastrantonio G., F. Einaudi, and D. Fua, 1976: Generation of gravity waves by jet streams in the atmosphere.J. Atmos. Sci., 33, 1730- 1738.
Milbrand t, J. A. and M. K. Yau, 2005a: A multi-moment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051- 3064.
Milbrand t, J. A. and M. K. Yau, 2005b: A multi-moment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065- 3081.
Miles J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496- 508.
Moore J. T., W. A. Abeling, 1988: A diagnosis of unbalanced flow in upper levels during the AEV-SESAME I period. Mon. Wea. Rev., 116, 2425- 2436.
Newton C. W., 1966: Circulations in large sheared cumulonimbus. Tellus, 18, 699- 743.
Newton C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210- 222.
Parker M. D., R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413- 3436.
Raymond D. J., 1983: Waves-CISK in mass flux form. J. Atmos. Sci., 40, 2561- 2572.
Raymond D. J., 1984: A Wave-CISK model of squall lines. J. Atmos. Sci., 41 1946- 1958.
Rossby C. G., 1938: On the mutual adjustment of pressure and velocity distributions in certain simple current systems II. J. Mar. Res., 1, 239- 263.
Rotunno R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong long-lived squall lines. J. Atmos. Sci., 45, 463- 484.
Roux F., J. Testud, M. Payen, and B. Pinty, 1984: West African squall line thermodynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104- 3121.
Shou S. W., L. L. Shen, and X. P. Yao, 2003: Mesoscale Meteorology. China Meteorological Press, Beijing, 370 pp.(in Chinese)
Smull B. F., R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117- 133.
Smull B. F., R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869- 2889.
Stobie J. G., F. Einaudi, and L. W. Uccellini, 1983: A case study of gravity waves convective storms interaction 9 May 1979. J. Atmos. Sci., 40, 2804- 2830.
Sun H. L., Y. L. Luo, R. H. Zhang, L. P. Liu, and G. L. Wang, 2011: Analysis on the mature-stage features of the severe squall line occurring over the Yellow River and Huaihe Riber basins during 3-4 June 2009. Chinese J. Atmos. Sci., 35, 105- 120. (in Chinese)
Trier S. B., W. C. Skamarock, M. A. Lemome, and D. B. Parsons, 1996: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci., 53, 2861- 2886.
Wang X. F., B. W. Hu, and C. Li, 2010: Observation study and numerical simulation of the structure for a squall line case in Hubei. Plateau Meteorology, 29, 471- 485. (in Chinese)
Wakimoto R. M., 1982: Life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060- 1082.
Weisman M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvectives systems. J. Atmos. Sci., 49, 1826- 1847.
Weisman M. L., 2004: "A theory for strong long-lived squall lines" revisited. J. Atmos. Sci., 61, 361- 382.
Weisman M. L., R. Rotunno, 2005: Reply. J. Atmos.Sci., 62, 2997- 3002.
Weisman M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990- 2013.
Wilhelmson R. B., C. S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 1466- 1483.
Wu H. Y., H. S. Chen, Y. F. Jiang, L. N. Yao, and S. Y. Cao, 2013: Observation and simulation analyses on dynamical structure features in a severe line process on 3 June 2009. Plateau Meteorology, 32, 1084- 1094. (in Chinese)
Xu X. F., Z. B. Sun, 2003: Dynamic study on influence of gravity wave induced by unbalanced flow on Meiyu front heavy rain. Acta Meteorologica Sinica, 61, 656- 664. (in Chinese)
Yang M. J., R. A. Houze Jr, 1995a: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641- 661.
Yang M. J., R. A. Houze Jr, 1995b: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175- 3193.
Yao J. Q., J. H. Dai, and Z. Q. Yao, 2005: Case analysis of the formation and evolution of 12 July 2004 severe squall line. Journal of Applied Meteorological Science, 16, 746- 754. (in Chinese)
Zack J. W., M. L. Kaplan, 1987: Numerical simulations of the subsynoptic features associated with the AVE-SESAME I case Part I: The pre-convective environment. Mon. Wea. Rev., 115, 2367- 2394.
Zhang D. L., J. M. Fritsch, 1987: Numerical simulation of the meso-scale structure and evolution of the 1987 Johnstown flood. Part III: Internal gravity waves and the squall lin. J. Atmos. Sci., 45, 1252- 1268.
Zhang F., S. E. Koch, C. A. Davis, and M. L. Kaplan, 2000: A survey of unbalanced flow diagnostics and their application. Adv. Atmos. Sci.,17, 165-173, doi: 10.1007/s00376-000-0001-1.
Zhang F. Q., S. E. Koch, C. A. Davis, and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the east coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 2209- 2245.
Zhu L. L., Z. M. Wu, Q. G. Tai, W. Wei, and J. Y. Zhang, 2009: Analysis of gravity wave characteristics of a strong squall line process in April 2006 in Shandong province. Journal of Tropical Meteorology, 25, 465- 474. (in Chinese)
Zipser E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568- 1589.
Zulicke C., D. Peters, 2006: Simulation of inertia-gravity waves in a poleward-breaking Rossby wave. J. Atmos. Sci.,63, 3253——3276