An, J. L., J. N. Zou, J. X. Wang, X. Lin, and B. Zhu, 2015: Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environmental Science and Pollution Research, 22(24), 19 607−19 617, https://doi.org/10.1007/s11356-015-5177-0.
Atkinson, R., 2000: Atmospheric chemistry of VOCs and NOx. Atmos. Environ., 34(12−14), 2063−2101, https://doi.org/10.1016/S1352-2310(99)00460-4.
Belis, C. A., D. Pernigotti, F. Karagulian, G. Pirovano, B. R. Larsen, M. Gerboles, and P. K. Hopke, 2015: A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises. Atmos. Environ., 119, 35−44, https://doi.org/10.1016/j.atmosenv.2015.08.002.
Blanchard, C. L., 2003: Methods for attributing ambient air pollutants to emission sources. Annual Review of Energy and the Environment, 24, 329−365, https://doi.org/10.1146/annurev.energy.24.1.329.
Bo, Y., H. Cai, and S. D. Xie, 2008: Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmospheric Chemistry and Physics, 8(23), 7297−7316, https://doi.org/10.5194/acp-8-7297-2008.
Cai, C. J., F. H. Geng, X. X. Tie, Q. Yu, and J. L. An, 2010: Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ., 44(38), 5005−5014, https://doi.org/10.1016/j.atmosenv.2010.07.059.
Chen, T. S., and Coauthors, 2020: Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmospheric Chemistry and Physics, 20(11), 7069−7086, https://doi.org/10.5194/acp-20-7069-2020.
Chen, W. T., M. Shao, S. H. Lu, M. Wang, L. M. Zeng, B. Yuan, and Y. Liu, 2014: Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmospheric Chemistry and Physics, 14(6), 3047−3062, https://doi.org/10.5194/acp-14-3047-2014.
Chi, Y. G., Z. Y. Li, Y. L. Feng, S. Wen, Z. Q. Yu, G. Y. Sheng, and J. M. Fu, 2008: Carbonyl compound concentrations in the air at Dinghu Mountain, Guangdong Province. Acta Scientiae Circumstantiae, 28(11), 2347−2353, https://doi.org/10.3321/j.issn:0253-2468.2008.11.029. (in Chinese with English abstract
de Gouw, J. A., and Coauthors, 2005: Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. Journal of Geophysical Research, 110(D16), D16305, https://doi.org/10.1029/2004JD005623.
Deng, Y. Y., J. Li, Y. Q. Li, R. R. Wu, and S. D. Xie, 2019: Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu. Journal of Environmental Science, 75, 334−345, https://doi.org/10.1016/j.jes.2018.05.004.
Derwent, R. G., M. E. Jenkin, S. M. Saunders, and M. J. Pilling, 2001: Characterization of the reactivities of volatile organic compounds using a master chemical mechanism. Journal of the Air & Waste Management Association, 51(5), 699−707, https://doi.org/10.1080/10473289.2001.10464297.
Du, W., A. Cohen, G. F. Shen, M. Y. Ru, H. Z. Shen, and S. Tao, 2018: Fuel use trends for boiling water in rural China (1992-2012) and environmental health implications: A national cross-sectional study. Environ. Sci. Technol., 52(21), 12 886−12 894, https://doi.org/10.1021/acs.est.8b02389.
Duan, J. C., J. H. Tan, L. Yang, S. Wu, and J. M. Hao, 2008: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88(1), 25−35, https://doi.org/10.1016/j.atmosres.2007.09.004.
Dunne, E., I. E. Galbally, M. Cheng, P. Selleck, S. B. Molloy, and S. J. Lawson, 2018: Comparison of VOC measurements made by PTR-MS, adsorbent tubes-GC-FID-MS and DNPH derivatization-HPLC during the Sydney Particle Study. 2012. A contribution to the assessment of uncertainty in routine atmospheric VOC measurements. Atmospheric Measurement Techniques, 11(1), 141−159, https://doi.org/10.5194/amt-11-141-2018.
Fu, S., and Coauthors, 2020: Improving VOCs control strategies based on source characteristics and chemical reactivity in a typical coastal city of South China through measurement and emission inventory. Science of the Total Environment, 744, 140825, https://doi.org/10.1016/j.scitotenv.2020.140825.
Gao, W., X. X. Tie, J. M. Xu, R. J. Huang, X. Q. Mao, G. Q. Zhou, and L. Y. Chang, 2017: Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Science of the Total Environment, 603−604, 425−433, https://doi.org/10.1016/j.scitotenv.2017.06.099.
Gaudel, A., and Coauthors, 2018: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa: Science of the Anthropocene, 6(1), 39, https://doi.org/10.1525/elementa.291.
Ge, S. S., and Coauthors, 2019: Abundant NH3 in China enhances atmospheric HONO production by promoting the heterogeneous reaction of SO2 with NO2. Environ. Sci. Technol., 53(24), 14 339−14 347, https://doi.org/10.1021/acs.est.9b04196.
Guo, H., T. Wang, D. R. Blake, I. J. Simpson, Y. H. Kwok, and Y. S. Li, 2006: Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China. Atmos. Environ., 40(13), 2345−2359, https://doi.org/10.1016/j.atmosenv.2005.12.011.
Guo, S. J., M. Chen, and J. H. Tan, 2016: Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China. Atmospheric Research, 169, 46−53, https://doi.org/10.1016/j.atmosres.2015.09.028.
Han, T. T., Z. Q. Ma, W. Y. Xu, L. Qiao, Y. R. Li, D. He, and Y. Wang, 2020: Characteristics and source implications of aromatic hydrocarbons at urban and background areas in Beijing, China. Science of the Total Environment, 707, 136083, https://doi.org/10.1016/j.scitotenv.2019.136083.
Hang, S., and Coauthors, 2008: Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China. J. Geophys. Res., 113(D14), D14312, https://doi.org/10.1029/2007JD009060.
He, L., 2018: Pollution charaterization and source apportionment of vocs in Chengdu urban air. M.S. thesis, Southwest Jiaotong University. (in Chinese)
Ho, K. F., S. S. H. Ho, W. T. Dai, J. J. Cao, R.-J. Huang, L. W. Tian, and W. J. Deng, 2014: Seasonal variations of monocarbonyl and dicarbonyl in urban and sub-urban sites of Xi'an, China. Environmental Monitoring and Assessment, 186(5), 2835−2849, https://doi.org/10.1007/s10661-013-3584-6.
Huang, J., and Coauthors, 2008: Characteristics of carbonyl compounds in ambient air of Shanghai, China. Journal of Atmospheric Chemistry, 61(1), 1−20, https://doi.org/10.1007/s10874-009-9121-x.
Huang, X.-F., B. Zhang, S.-Y. Xia, Y. Han, C. Wang, G.-H. Yu, and N. Feng, 2020: Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China. Environmental Pollution, 261, 114152, https://doi.org/10.1016/j.envpol.2020.114152.
Hui, L. R., and Coauthors, 2020: VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos. Environ., 224, 117340, https://doi.org/10.1016/j.atmosenv.2020.117340.
Jia, C. H., 2018: Characteristics and chemical behaviors of atmospheric non-methane hydrocarbons in Lanzhou valley, Western China. PhD dissertation, Lanzhou University. (in Chinese)
Jia, C. H., and Coauthors, 2016: Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmospheric Research, 169, 225−236, https://doi.org/10.1016/j.atmosres.2015.10.006.
Kaser, L., and Coauthors, 2013: Comparison of different real time VOC measurement techniques in a ponderosa pine forest. Atmospheric Chemistry and Physics, 13(5), 2893−2906, https://doi.org/10.5194/acp-13-2893-2013.
Kurokawa, J., T. Ohara, T. Morikawa, S. Hanayama, J.-M. Greet, T. Fukui, K. Kawashima, and H. Akimoto, 2013: Emissions of air pollutants and greenhouse gases over Asian regions during 2000−2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics Discussions, 13(4), 10 049−10 123, https://doi.org/10.5194/acpd-13-10049-2013.
Le Breton, M., and Coauthors, 2018: Chlorine oxidation of VOCs at a semi-rural site in Beijing: Significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl-VOC production. Atmospheric Chemistry and Physics, 18(17), 13 013−13 030, https://doi.org/10.5194/acp-18-13013-2018.
Li, B. W., and Coauthors, 2019a: Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmospheric Chemistry and Physics, 19(1), 617−638, https://doi.org/10.5194/acp-19-617-2019.
Li, J., S. D. Xie, L. M. Zeng, L. Y. Li, Y. Q. Li, and R. R. Wu, 2015: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmospheric Chemistry and Physics, 15(14), 7945−7959, https://doi.org/10.5194/acp-15-7945-2015.
Li, K., D. J. Jacob, H. Liao, L. Shen, Q. Zhang, and K. H. Bates, 2019b: Anthropogenic drivers of 2013−2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United State of America, 116(2), 422−427, https://doi.org/10.1073/pnas.1812168116.
Li, L., and Coauthors, 2020: Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Science of the Total Environment, 732, 139282, https://doi.org/10.1016/j.scitotenv.2020.139282.
Li, L. F., and X. M. Wang, 2012: Seasonal and diurnal variations of atmospheric non-methane hydrocarbons in Guangzhou, China. International Journal of Environmental Research and Public Health, 9(5), 1859−1873, https://doi.org/10.3390/ijerph9051859.
Li, M., and Coauthors, 2017: MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2), 935−963, https://doi.org/10.5194/acp-17-935-2017.
Li, M., and Coauthors, 2019c: Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990−2017: Drivers, speciation and ozone formation potential. Atmospheric Chemistry and Physics, 19(13), 8897−8913, https://doi.org/10.5194/acp-19-8897-2019.
Liang, X. M., X. F. Chen, J. N. Zhang, T. L. Shi, X. B. Sun, L. Y. Fan, L. M. Wang, and D. Q. Ye, 2017: Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China. Atmos. Environ., 162, 115−126, https://doi.org/10.1016/j.atmosenv.2017.04.036.
Ling, Z. H., and H. Guo, 2014: Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environmental Science & Policy, 38, 180−191, https://doi.org/10.1016/j.envsci.2013.12.004.
Liu, B. S., and Coauthors, 2016: Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environmental Pollution, 218, 757−769, https://doi.org/10.1016/j.envpol.2016.07.072.
Liu, H., H. Y. Man, M. Tschantz, Y. Wu, K. B. He, and J. M. Hao, 2015a: VOC from vehicular evaporation emissions: Status and control strategy. Environ. Sci. Technol., 49(24), 14 424−14 431, https://doi.org/10.1021/acs.est.5b04064.
Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hübler, and P. C. Murphy, 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res., 92(D4), 4191−4207, https://doi.org/10.1029/JD092iD04p04191.
Liu, Y., M. Shao, W. C. Kuster, P. D. Goldan, X. H. Li, S. H. Lu, and J. A. de Gouw, 2009: Source identification of reactive hydrocarbons and oxygenated VOCs in the summertime in Beijing. Environ. Sci. Technol., 43(1), 75−81, https://doi.org/10.1021/es801716n.
Liu, Y., and Coauthors, 2015b: Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: Observation and modeling implications. Atmospheric Chemistry and Physics, 15(6), 3045−3062, https://doi.org/10.5194/acp-15-3045-2015.
Louie, P. K. K., and Coauthors, 2013: VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ., 76, 125−135, https://doi.org/10.1016/j.atmosenv.2012.08.058.
Lü, H. X., Q.-Y. Cai, S. Wen, Y. G. Chi, S. J. Guo, G. Y. Sheng, and J. M. Fu, 2010: Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Science of the Total Environment, 408(17), 3523−3529, https://doi.org/10.1016/j.scitotenv.2010.05.013.
Lyu, X. P., and Coauthors, 2020: Hazardous volatile organic compounds in ambient air of China. Chemosphere, 246, 125731, https://doi.org/10.1016/j.chemosphere.2019.125731.
Ma, Z. B., and Coauthors, 2019: The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China. Journal of Environmental Sciences, 79, 121−134, https://doi.org/10.1016/j.jes.2018.11.015.
Mellouki, A., T. J. Wallington, and J. Chen, 2015: Atmospheric chemistry of oxygenated volatile organic compounds: impacts on air quality and climate. Chemical Reviews, 115(10), 3984−4014, https://doi.org/10.1021/cr500549n.
Morino, Y., T. Ohara, Y. Yokouchi, and A. Ooki, 2011: Comprehensive source apportionment of volatile organic compounds using observational data, two receptor models, and an emission inventory in Tokyo metropolitan area. J. Geophys. Res., 116(D2), D02311, https://doi.org/10.1029/2010JD014762.
Mozaffar, A., Y.-L. Zhang, M. Y. Fan, F. Cao, and Y.-C. Lin, 2020: Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmospheric Research, 240, 104923, https://doi.org/10.1016/j.atmosres.2020.104923.
Ou, J. M., J. Y. Zheng, Z. B. Yuan, D. B. Guan, Z. J. Huang, F. Yu, M. Shao, and P. K. K. Louie, 2018: Reconciling discrepancies in the source characterization of VOCs between emission inventories and receptor modeling. Science of the Total Environment, 628−629, 697−706, https://doi.org/10.1016/j.scitotenv.2018.02.102.
Pang, X. B., and Y. J. Mu, 2006: Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmos. Environ., 40(33), 6313−6320, https://doi.org/10.1016/j.atmosenv.2006.05.044.
Pang, X. B., and X. Q. Lee, 2010: Temporal variations of atmospheric carbonyls in urban ambient air and street canyons of a Mountainous city in Southwest China. Atmos. Environ., 44(17), 2098−2106, https://doi.org/10.1016/j.atmosenv.2010.03.006.
Riedel, T. P., and Coauthors, 2014: An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmospheric Chemistry and Physics, 14(8), 3789−3800, https://doi.org/10.5194/acp-14-3789-2014.
Sahu, L. K., R. Yadav, and D. Pal, 2016: Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions. J. Geophys. Res., 121(5), 2416−2433, https://doi.org/10.1002/2015JD024454.
Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. John Wiley & Sons, Inc., 429−443.
Sheng, J. J., D. L. Zhao, D. P. Ding, X. Li, M. Y. Huang, Y. Gao, J. N. Quan, and Q. Zhang, 2018: Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China. Atmospheric Research, 212, 54−63, https://doi.org/10.1016/j.atmosres.2018.05.005.
Shirley, T. R., and Coauthors, 2006: Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmospheric Chemistry and Physics, 6, 2753−2765, https://doi.org/10.5194/acp-6-2753-2006.
Simayi, M., Y. F. Hao, J. Li, R. R. Wu, Y. Q. Shi, Z. Y. Xi, Y. Zhou, and S. D. Xie, 2019: Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010−2016. Atmos. Environ., 211, 194−203, https://doi.org/10.1016/j.atmosenv.2019.04.064.
Su, Y. L., 2012: A preliminary study on the variation characteristics and reactivity of atmospheric VOCs in Urban area of Shanghai. M.S. thesis, East China University of Science and Technology.
Sun, J., Y. S. Wang, F. K. Wu, G. Q. Tang, L. L. Wang, Y. H. Wang, and Y. Yang, 2018a: Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods. Environmental Pollution, 236, 907−915, https://doi.org/10.1016/j.envpol.2017.10.051.
Sun, W., M. Shao, C. Granier, Y. Liu, C. S. Ye, and J. Y. Zheng, 2018b: Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China. Earth's Future, 6(8), 1112−1133, https://doi.org/10.1029/2018EF000822.
Tang, X. Y., Y. H. Zhang, and M. Shao, 2006: Atmospheric Environmental Chemistry. 2nd ed., Higher Education Press, 739 pp. (in Chinese)
Tham, Y. J., and Coauthors, 2016: Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 16(23), 14 959−14 977, https://doi.org/10.5194/acp-16-14959-2016.
Thornton, J. A., and Coauthors, 2010: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature, 464(7286), 271−274, https://doi.org/10.1038/nature08905.
Uchiyama, S., and S. Hasegawa, 2000: Investigation of a long-term sampling period for monitoring volatile organic compounds in ambient air. Environ. Sci. Technol., 34(21), 4656−4661, https://doi.org/10.1021/es990843u.
Volkamer, R., P. Sheehy, L. T. Molina, and M. J. Molina, 2010: Oxidative capacity of the Mexico City atmosphere−Part 1: A radical source perspective. Atmospheric Chemistry and Physics, 10(14), 6969−6991, https://doi.org/10.5194/acp-10-6969-2010.
Wang, G. H., and Coauthors, 2016a: Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 1 3630−13 635, https://doi.org/10.1073/pnas.1616540113.
Wang, M., and Coauthors, 2015: Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002−2013. Atmospheric Chemistry and Physics, 15(3), 1489−1502, https://doi.org/10.5194/acp-15-1489-2015.
Wang, M., M. Shao, W. Chen, B. Yuan, S. Lu, Q. Zhang, L. Zeng, and Q. Wang, 2014: A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmospheric Chemistry and Physics, 14(12), 5871−5891, https://doi.org/10.5194/acp-14-5871-2014.
Wang, N., X. P. Lyu, X. J. Deng, X. Huang, F. Jiang, and A. J. Ding, 2019: Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677, 732−744, https://doi.org/10.1016/j.scitotenv.2019.04.388.
Wang, Q., 2020: Chemical characteristics and sources of volatile organic compounds in Shanghai during an ozone and particulate pollution episode in May 2019. Environmental Science, 41(6), 2555−2564, https://doi.org/10.13227/j.hjkx.201907115. (in Chinese with English abstract
Wang, T., and Coauthors, 2016b: Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. J. Geophys. Res., 121(5), 2476−2489, https://doi.org/10.1002/2015JD024556.
Wang, T., L. K. Xue, P. Brimblecombe, Y. F. Lam, L. Li, and L. Zhang, 2017a: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575, 1582−1596, https://doi.org/10.1016/j.scitotenv.2016.10.081.
Wang, Y., and Coauthors, 2017b: Long-term O3-precursor relationships in Hong Kong: Field observation and model simulation. Atmospheric Chemistry and Physics, 17(18), 10 919−10 935, https://doi.org/10.5194/acp-17-10919-2017.
Wang, Y. S., X. Y. Ren, D. S. Ji, J. Q. Zhang, J. Sun, and F. K. Wu, 2012: Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007. Journal of Environmental Sciences, 24(1), 95−101, https://doi.org/10.1016/S1001-0742(11)60732-8.
Warneke, C., T. Karl, H. Judmaier, A. Hansel, A. Jordan, W. Lindinger, and P. J. Crutzen, 1999: Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry. Global Biogeochemical Cycles, 13(1), 9−17, https://doi.org/10.1029/98GB02428.
Watson, J. G., J. C. Chow, and E. M. Fujita, 2001: Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ., 35(9), 1567−1584, https://doi.org/10.1016/S1352-2310(00)00461-1.
Wei, W., S. X. Wang, S. Chatani, Z. Klimont, J. Cofala, and J. M. Hao, 2008: Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmos. Environ., 42(20), 4976−4988, https://doi.org/10.1016/j.atmosenv.2008.02.044.
Whalley, L. K., and Coauthors, 2009: The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean. Atmospheric Chemistry and Physics Discussions, 9(4), 15 959−16 009, https://doi.org/10.5194/acpd-9-15959-2009.
Wu, R. R., and S. D. Xie, 2017: Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds. Environ. Sci. Technol., 51(5), 2574−2583, https://doi.org/10.1021/acs.est.6b03634.
Wu, R. R., Y. Bo, J. Li, L. Y. Li, Y. Q. Li, and S. D. Xie, 2016a: Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008−2012. Atmos. Environ., 127, 244−254, https://doi.org/10.1016/j.atmosenv.2015.12.015.
Wu, R. R., J. Li, Y. F. Hao, Y. Q. Li, L. M. Zeng, and S. D. Xie, 2016b: Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China. Science of the Total Environment, 560−561, 62−72, https://doi.org/10.1016/j.scitotenv.2016.04.030.
Xing, C. Z., and Coauthors, 2020: Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Science of the Total Environment, 715, 136258, https://doi.org/10.1016/j.scitotenv.2019.136258.
Xu, J. M., X. X. Tie, W. Gao, Y. F. Lin, and Q. Y. Fu, 2019: Measurement and model analyses of the ozone variation during 2006 to 2015 and its response to emission change in megacity Shanghai, China. Atmospheric Chemistry and Physics, 19(14), 9017−9035, https://doi.org/10.5194/acp-19-9017-2019.
Xu, Z. N., X. Huang, W. Nie, X. G. Chi, Z. Xu, L. F. Zheng, P. Sun, and A. J. Ding, 2017: Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos. Environ., 168, 112−124, https://doi.org/10.1016/j.atmosenv.2017.08.035.
Xue, L. K., and Coauthors, 2016: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics, 16(15), 9891−9903, https://doi.org/10.5194/acp-16-9891-2016.
Xue, Y. G., Y. Huang, S. S. H. Ho, L. Chen, L. Q. Wang, S. C. Lee, and J. J. Cao, 2020: Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China. Atmospheric Chemistry and Physics, 20(9), 5425−5436, https://doi.org/10.5194/acp-20-5425-2020.
Yang, X., and Coauthors, 2018: Observations and explicit modeling of summertime carbonyl formation in Beijing: Identification of key precursor species and their impact on atmospheric oxidation chemistry. J. Geophys. Res., 123(2), 1426−1440, https://doi.org/10.1002/2017JD027403.
Yang, Y. C., X. G. Liu, J. Zheng, Q. W. Tan, M. Feng, Y. Qu, J. L. An, and N. L. Cheng, 2019a: Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. Journal of Environmental Sciences, 79, 297−310, https://doi.org/10.1016/j.jes.2018.12.002.
Yang, Z., H. R. Cheng, Z. W. Wang, J. Peng, J. X. Zhu, X. P. Lyu, and H. Guo, 2019b: Chemical characteristics of atmospheric carbonyl compounds and source identification of formaldehyde in Wuhan, Central China. Atmospheric Research, 228, 95−106, https://doi.org/10.1016/j.atmosres.2019.05.020.
Yokelson, R. J., and Coauthors, 2009: Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 9(15), 5785−5812, https://doi.org/10.5194/acp-9-5785-2009.
Young, C. J., and Coauthors, 2012: Vertically resolved measurements of nighttime radical reservoirs in Los Angeles and their contribution to the urban radical budget. Environ. Sci. Technol., 46(20), 10 965−10 973, https://doi.org/10.1021/es302206a.
Yuan, B., and Coauthors, 2012: Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China. Atmospheric Research, 116, 93−104, https://doi.org/10.1016/j.atmosres.2012.03.006.
Yuan, B., W. W. Hu, M. Shao, M. Wang, W. T. Chen, S. H. Lu, L. M. Zeng, and M. Hu, 2013: VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China. Atmospheric Chemistry and Physics, 13(3), 6631−6679, https://doi.org/10.5194/acp-13-8815-2013.
Yuan, B., A. R. Koss, C. Warneke, M. Coggon, K. Sekimoto, and J. A. de Gouw, 2017: Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chemical Reviews, 117(21), 13 187−13 229, https://doi.org/10.1021/acs.chemrev.7b00325.
Zhang, K., L. Li, L. Huang, Y. J. Wang, J. T. Huo, Y. S. Duan, Y. H. Wang, and Q. Y. Fu, 2020a: The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmos. Environ., 232, 117511, https://doi.org/10.1016/j.atmosenv.2020.117511.
Zhang, L. H., and Coauthors, 2020b: Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment. Journal of Environmental Sciences, 95, 190−200, https://doi.org/10.1016/j.jes.2020.03.023.
Zhang, X. M., and Coauthors, 2017: Ambient volatile organic compounds pollution in China. Journal of Environmental Sciences, 55, 69−75, https://doi.org/10.1016/j.jes.2016.05.036.
Zhang, X. X., X. Ding, X. M. Wang, D. Talifu, G. Wang, Y. L. Zhang, and A. Abulizi, 2019: Volatile organic compounds in a petrochemical region in arid of NW China: Chemical reactivity and source apportionment. Atmosphere, 10(11), 641, https://doi.org/10.3390/atmos10110641.
Zhang, Y. L., and Coauthors,X. M. Wang, B. Barletta, I. J. Simpson, D. R. Blake, X. X. Fu, Z. Zhang, Q. F. He, T. Y. Liu, and X. Y. Zhao, 2013: Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. Journal of Hazardous Materials, 250−251(2), 403−411, https://doi.org/10.1016/j.jhazmat.2013.02.023.
Zhang, Z., 2016: Spatiotemporal patterns of ambient non-methane hydrocarbons in China. PhD dissertation, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese)
Zhao, Q. Y., and Coauthors, 2020: Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China. Atmospheric Chemistry and Physics, 20(6), 3905−3919, https://doi.org/10.5194/acp-20-3905-2020.
Zheng, C. H., and Coauthors, 2017: Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection. Atmospheric Environment, 150, 116−125, https://doi.org/10.1016/j.atmosenv.2016.11.023.
Zheng, J. Y., and Coauthors, Y. Yu, Z. Mo, Z. Zhang, X. Wang, S. Yin, K. Peng, Y. Yang, X. Feng, and H. Cai, 2013: Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Science of the Total Environment, 456-457(7), 127−136, https://doi.org/10.1016/j.scitotenv.2013.03.055.
Zhou, M. M., W. Jiang, W. D. Gao, B. H. Zhou, and X. C. Liao, 2020: A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis. Process Safety and Environmental Protection, 139, 147−160, https://doi.org/10.1016/j.psep.2020.03.040.
Zhou, X., and Coauthors, 2019: Volatile organic compounds in a typical petrochemical industrialized valley city of northwest China based on high-resolution PTR-MS measurements: Characterization, sources and chemical effects. Science of the Total Environment, 671, 883−896, https://doi.org/10.1016/j.scitotenv.2019.03.283.
Zhu, J., S. S. Wang, H. L. Wang, S. G. Jing, S. R. Lou, A. Saiz-Lopez, and B. Zhou, 2020: Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmospheric Chemistry and Physics, 20(3), 1217−1232, https://doi.org/10.5194/acp-20-1217-2020.
Zou, Y., and Coauthors, 2015: Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmospheric Chemistry and Physics, 15(12), 6625−6636, https://doi.org/10.5194/acp-15-6625-2015.