Abbott, B. W., and J. B. Jones, 2015: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology, 21, 4570−4587, https://doi.org/10.1111/gcb.13069.
Anand, R., J.-C. Germon, P. M. Groffman, J. M. Norton, L. Philippot, J. I. Prosser, and J. P. Schimel, 2012: Nitrogen transformations. Handbook of Soil Sciences: Properties and Processes, 2nd ed., P. M. Huang et al., Eds., Taylor & Francis Group, 2701−2753.
Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nature Communications, 10, 264, https://doi.org/10.1038/s41467-018-08240-4.
Chapin III, F. S., P. A. Matson, and P. M. Vitousek, 2011: Principles of Terrestrial Ecosystem Ecology. 2nd ed., Springer, 529 pp.
Chen, X. P., G. X. Wang, T. Zhang, T. X. Mao, D. Wei, Z. Y. Hu, and C. L. Song, 2017: Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow. Atmos. Environ., 157, 111−124, https://doi.org/10.1016/j.atmosenv.2017.03.024.
Cheng, G. D., and H. J. Jin, 2013: Permafrost and groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21, 5−23, https://doi.org/10.1007/s10040-012-0927-2.
Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds. Cambridge University Press, 465−570.
Cui, Q., C. C. Song, X. W. Wang, F. X. Shi, X. Y. Yu, and W. W. Tan, 2018: Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Science of the Total Environment, 616−617, 427−434, https://doi.org/10.1016/j.scitotenv.2017.10.246.
Elberling, B., H. H. Christiansen, and B. U. Hansen, 2010: High nitrous oxide production from thawing permafrost. Nature Geoscience, 3, 332−335, https://doi.org/10.1038/ngeo803.
Fotelli, M. N., D. Tsikou, A. Kolliopoulou, G. Aivalakis, P. Katinakis, M. K. Udvardi, H. Rennenberg, and E. Flemetakis, 2011: Nodulation enhances dark CO2 fixation and recycling in the model legume Lotus japonicus. Journal of Experimental Botany, 62, 2959−2971, https://doi.org/10.1093/jxb/err009.
Guo, Y. D., C. C. Song, W. W. Tan, X. W. Wang, and Y. Z. Lu, 2018: Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of Northeastern China. Hydrology and Earth System Sciences, 22, 1081−1093, https://doi.org/10.5194/hess-22-1081-2018.
Harden, J. W., and Coauthors, 2012: Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett., 39, L15704, https://doi.org/10.1029/2012GL051958.
Hugelius, G., and Coauthors, 2014: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573−6593, https://doi.org/10.5194/bg-11-6573-2014.
Hugelius, G., C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson, 2013: The Northern Circumpolar Soil Carbon Database: Spatially distributed datasets of soil coverage and soil carbon storage in the Northern permafrost regions. Earth System Science Data, 5, 3−13, https://doi.org/10.5194/essd-5-3-2013.
IPCC, 2006: N2O emissions from managed soils, and CO2 emissions from lime and urea application. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, S. Eggleston et al., Eds., Cambridge University Press, 11 pp.
IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 151 pp.
IUSS Working Group WRB, 2015: World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, 192 pp.
Liu, C. Y., and X. H. Zheng, Institute of Atmospheric Physics, Chinese Academy of Sciences, Chamber-based automatic system for monitoring gas fluxes: ZL201611077565.5 [P], 2019. 04. 23.
Liu, X.-Y., and Coauthors, 2018: Nitrate is an important nitrogen source for arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 115, 3398−3403, https://doi.org/10.1073/pnas.1715382115.
Marushchak, M. E., A. Pitkämäki, H. Koponen, C. Biasi, M. Seppälä, and P. J. Martikainen, 2011: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology, 17, 2601−2614, https://doi.org/10.1111/j.1365-2486.2011.02442.x.
Mueller, C. W., J. Rethemeyer, J. Kao-Kniffin, S. Löppmann, K. M. Hinkel, and J. G. Bockheim, 2015: Large amounts of labile organic carbon in permafrost soils of Northern Alaska. Global Change Biology, 21, 2804−2817, https://doi.org/10.1111/gcb.12876.
Palmer, K., C. Biasi, and M. A. Horn, 2012: Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. The ISME Journal, 6, 1058−1077, https://doi.org/10.1038/ismej.2011.172.
Pan, Y. P., Y. S. Wang, G. Q. Tang, and D. Wu, 2012: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmospheric Chemistry and Physics, 12, 6515−6535, https://doi.org/10.5194/acp-12-6515-2012.
Repo, M. E., S. Susiluoto, S. E. Lind, S. Jokinen, V. Elsakov, C. Biasi, T. Virtanen, and P. J. Martikainen, 2009: Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2, 189−192, https://doi.org/10.1038/ngeo434.
Rodionow, A., H. Flessa, O. Kazansky, and G. Guggenberger, 2006: Organic matter composition and potential trace gas production of permafrost soils in the forest tundra in Northern Siberia. Geoderma, 135, 49−62, https://doi.org/10.1016/j.geoderma.2005.10.008.
Schimel, J., and J. Bennett, 2004: Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591−602, https://doi.org/10.1890/03-8002.
Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, 2009: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556−559, https://doi.org/10.1038/nature08031.
Schuur, E. A. G., and Coauthors, 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359−374, https://doi.org/10.1007/s10584-013-0730-7.
Schuur, E. A. G., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171−179, https://doi.org/10.1038/nature14338.
Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, 2009: Soil organic carbon pools in the Northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023, https://doi.org/10.1029/2008GB003327.
Valente, R. J., F. C. Thornton, and E. J. Williams, 1995: Field comparison of static and flow-through chamber techniques for measurement of soil NO emission. J. Geophys. Res., 100, 21147−21152, https://doi.org/10.1029/95JD01875.
van Cleve, K., and V. Alexander, 1981: Nitrogen cycling in tundra and boreal ecosystems. Ecol. Bull., 33, 375−404.
Voigt, C., R. E. Lamprecht, M. E. Marushchak, S. E. Lind, A. Novakovskiy, M. Aurela, P. Martikainen, and C. Biasi, 2017a: Warming of subarctic tundra increases emissions of all three important greenhouse gases−carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23, 3121−3138, https://doi.org/10.1111/gcb.13563.
Voigt, C., and Coauthors, 2017b: Increased nitrous oxide emissions from arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America, 114, 6238−6243, https://doi.org/10.1073/pnas.1702902114.
Wilkerson, J., R. Dobosy, D. S. Sayres, C. Healy, E. Dumas, B. Baker, and J. G. Anderson, 2019: Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method. Atmospheric Chemistry and Physics, 19, 4257−4268, https://doi.org/10.5194/acp-19-4257-2019.
Zhang, W., C. Y. Liu, X. H. Zheng, Y. F. Fu, X. X. Hu, G. M. Cao, and K. Butterbach-Bahl, 2014: The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai-Tibetan Plateau. Soil Biology and Biochemistry, 71, 105−112, https://doi.org/10.1016/j.soilbio.2014.01.005.
Zhang, W., and Coauthors, 2018: A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment. Science of the Total Environment, 616−617, 305−317, https://doi.org/10.1016/j.scitotenv.2017.09.261.
Zimov, S. A., E. A. G. Schuur, and F. S. Chapin III, 2006: Permafrost and the global carbon budget. Science, 312, 1612−1613, https://doi.org/10.1126/science.1128908.