Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 2359−2371, https://doi.org/10.1175/MWR-D-11-00013.1.
Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for satellite radiances in ensemble Kalman filter. Mon. Wea. Rev., 138, 282−290, https://doi.org/10.1175/2009MWR3017.1.
Chan, M.-Y., F. Q. Zhang, X. C. Chen, and L. R. Leung, 2020: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 3203−3224, https://doi.org/10.1175/MWR-D-19-0343.1.
CIMSS, 2020: ABI band 8 (6.2 µm) quick guide. [Available from http://cimss.ssec.wisc.edu/goes/OCLOFactSheetPDFs/ABIQuickGuide_Band08.pdf]
Cintineo, R. M., J. A. Otkin, T. A. Jones, S. Koch, and D. J. Stensrud, 2016: Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE. Mon. Wea. Rev., 144, 3159−3180, https://doi.org/10.1175/MWR-D-15-0366.1.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.
Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating non-local observations with a local ensemble Kalman filter. Tellus A, 59, 719−730, https://doi.org/10.1111/j.1600-0870.2007.00260.x.
Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723−757, https://doi.org/10.1002/qj.49712555417.
Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776−2790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.
Han, Y., P. van Delst, Q. H. Liu, F. Z. Weng, B. H. Yan, R. Treadon, and J. Derber, 2006: JCSDA Community Radiative Transfer Model (CRTM)-version 1. NOAA Tech. Rep. NESDIS 122, 40 pp.
Hayatbini, N., K.-L. Hsu, S. Sorooshian, Y. J. Zhang, and F. Q. Zhang, 2019: Effective cloud detection and segmentation using a gradient-based algorithm for satellite imagery: Application to improve PERSIANN-CCS. Journal of Hydrometeorology, 20, 901−913, https://doi.org/10.1175/JHM-D-18-0197.1.
Honda, T., and Coauthors, 2018a: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213−229, https://doi.org/10.1175/MWR-D-16-0357.1.
Honda, T., S. Kotsuki, G.-Y. Lien, Y. Maejima, K. Okamoto, and T. Miyoshi, 2018b: Assimilation of Himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res., 123, 965−976, https://doi.org/10.1002/2017JD027096.
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796−811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123−137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.
Houtekamer, P. L., and F. Q. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 144, 4489−4532, https://doi.org/10.1175/MWR-D-15-0440.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927−945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Janjic, Z. I., 1996: The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354−355.
Johnson, A., X. G. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 3087−3108, https://doi.org/10.1175/MWR-D-14-00345.1.
Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013: Assimilation of satellite infrared radiances and Doppler radar observations during a cool season observing system simulation experiment. Mon. Wea. Rev., 141, 3273−3299, https://doi.org/10.1175/MWR-D-12-00267.1.
Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2014: Forecast evaluation of an observing system simulation experiment assimilating both radar and satellite data. Mon. Wea. Rev., 142, 107−124, https://doi.org/10.1175/MWR-D-13-00151.1.
Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast system. Mon. Wea. Rev., 148, 1829−1859, https://doi.org/10.1175/MWR-D-19-0379.1.
Kerr, C. A., D. J. Stensrud, and X. G. Wang, 2015: Assimilation of cloud-top temperature and radar observations of an idealized splitting supercell using an observing system simulation experiment. Mon. Wea. Rev., 143, 1018−1034, https://doi.org/10.1175/MWR-D-14-00146.1.
Kondo, K., and T. Miyoshi, 2016: Impact of removing covariance localization in an ensemble Kalman filter: Experiments with 10240 members using an intermediate AGCM. Mon. Wea. Rev., 144, 4849−4865, https://doi.org/10.1175/MWR-D-15-0388.1.
Lei, L. L., J. L. Anderson, and J. S. Whitaker, 2016: Localizing the impact of satellite radiance observations using a global group ensemble filter. Journal of Advances in Modeling Earth Systems, 8, 719−734, https://doi.org/10.1002/2016MS000627.
Lei, L. L, J. S. Whitaker, J. L. Anderson, and Z. M. Tan, 2020: Adaptive localization for satellite radiance observations in an ensemble Kalman filter. Journal of Advances in Modeling Earth Systems, 12, e2019MS001693, https://doi.org/10.1029/2019MS001693.
Lu, Y. H., and F. Q. Zhang, 2018: A novel channel-synthesizing method for reducing uncertainties in satellite radiative transfer modeling. Geophys. Res. Lett., 45, 5115−5125, https://doi.org/10.1029/2018GL077342.
Meng, Z. Y., and F. Q. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 3671−3682, https://doi.org/10.1175/2008MWR2270.1.
Minamide, M., and F. Q. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 1063−1081, https://doi.org/10.1175/MWR-D-16-0257.1.
Minamide, M., and F. Q. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 3241−3258, https://doi.org/10.1175/MWR-D-17-0367.1.
Minamide, M., and F. Q. Zhang, 2019: An adaptive background error inflation method for assimilating all-sky radiances. Quart. J. Roy. Meteor. Soc., 145, 805−823, https://doi.org/10.1002/qj.3466.
Miyoshi, T., K. Kondo, and T. Imamura, 2014: The 10:240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 5264−5271, https://doi.org/10.1002/2014GL060863.
Necker, T., M. Weissmann, Y. Ruckstuhl, J. Anderson, and T. Miyoshi, 2020a: Sampling error correction evaluated using a convective-scale 1000-member ensemble. Mon. Wea. Rev., 148, 1229−1249, https://doi.org/10.1175/MWR-D-19-0154.1.
Necker, T., S. Geiss, M. Weissmann, J. Ruiz, T. Miyoshi, and G.-Y. Lien, 2020b: A convective-scale 1:000-member ensemble simulation and potential applications. Quart. J. Roy. Meteor. Soc., 146, 1423−1442, https://doi.org/10.1002/qj.3744.
Okamoto, K., Y. Sawada, and M. Kunii, 2019: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Quart. J. Roy. Meteor. Soc., 145, 745−766, https://doi.org/10.1002/qj.3463.
Otkin, J. A., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, https://doi.org/10.1029/2009JD013759.
Otkin, J. A., 2012: Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. J. Geophys. Res., 117, D19203, https://doi.org/10.1029/2012JD017568.
Otkin, J. A., and R. Potthast, 2019: Assimilation of all-sky SEVIRI infrared brightness temperatures in a regional-scale ensemble data assimilation system. Mon. Wea. Rev., 147, 4481−4509, https://doi.org/10.1175/MWR-D-19-0133.1.
Poterjoy, J., and F. Q. Zhang, 2011: Dynamics and structure of forecast error covariance in the core of a developing hurricane. Journal of Atmospheric Sciences, 68, 1586−1606, https://doi.org/10.1175/2011JAS3681.1.
Poterjoy, J., F. Q. Zhang, and Y. H. Weng, 2014: The effects of sampling errors on the EnKF assimilation of inner-core hurricane observations. Mon. Wea. Rev., 142, 1609−1630, https://doi.org/10.1175/MWR-D-13-00305.1.
Sawada, Y. H., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every 10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res., 124, 2456−2561, https://doi.org/10.1029/2018JD029643.
Scheck, L., M. Weissmann, and L. Bach, 2020: Assimilating visible satellite images for convective-scale numerical weather prediction: A case-study. Quart. J. Roy. Meteor. Soc., 146, 3165−3186, https://doi.org/10.1002/qj.3840.
Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681−698, https://doi.org/10.1175/BAMS-D-15-00230.1.
Schröttle, J., M. Weissmann, L. Scheck, and A. Hutt, 2020: Assimilating visible and infrared radiances in idealized simulations of deep convection. Mon. Wea. Rev., 148, 4357−4375, https://doi.org/10.1175/MWR-D-20-0002.1.
Schwartz, C. S., and Z. Q. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational-ensemble data assimilation systems. Mon. Wea. Rev., 142, 716−738, https://doi.org/10.1175/MWR-D-13-00100.1.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp.
Snyder, C., and F. Q. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1633−1677, https://doi.org/10.1175//2555.1.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Weng, Y. H., and F. Q. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841−859, https://doi.org/10.1175/2011MWR3602.1.
Wu, P.-Y., S.-C. Yang, C.-C. Tsai, and H.-W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of a heavy rainfall event on 16 June 2008 in Taiwan. Mon. Wea. Rev., 148, 3631−3652, https://doi.org/10.1175/MWR-D-19-0319.1.
Zhang, F., C. Snyder, and J. Z. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238−1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.
Zhang, F. Q., Y. H. Weng, J. A. Sippel, Z. Y. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105−2125, https://doi.org/10.1175/2009MWR2645.1.
Zhang, F. Q., M. Minamide, and E. E. Clothiaux, 2016a: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 2954−2963, https://doi.org/10.1002/2016GL068468.
Zhang, F. Q., M. Minamide, R. G. Nystrom, X. C. Chen, S.-J. Lin, and L. M. Harris, 2019a: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R all-sky radiances. Bull. Amer. Meteor. Soc., 100, 1217−1222, https://doi.org/10.1175/BAMS-D-18-0149.1.
Zhang, M., and F. Q. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587−600, https://doi.org/10.1175/MWR-D-11-00023.1.
Zhang, Y. J., F. Q. Zhang, D. J. Stensrud, and Z. Y. Meng, 2016b: Intrinsic predictability of the 20 May 2013 Tornadic thunderstorm event in Oklahoma at storm scales. Mon. Wea. Rev., 144, 1273−1298, https://doi.org/10.1175/MWR-D-15-0105.1.
Zhang, Y. J., F. Q. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 3363−3381, https://doi.org/10.1175/MWR-D-18-0062.1.
Zhang, Y. J., D. J. Stensrud, and F. Q. Zhang, 2019b: Simultaneous assimilation of radar and all-sky satellite infrared radiance observations for convection-allowing ensemble analysis and prediction of severe thunderstorms. Mon. Wea. Rev., 147, 4389−4409, https://doi.org/10.1175/MWR-D-19-0163.1.
Zhang, Y. J., D. J. Stensrud, and E. E. Clothiaux, 2021: Benefits of the Advanced Baseline Imager (ABI) for ensemble-based analysis and prediction of severe thunderstorms. Mon. Wea. Rev., 149(2), 313−332, https://doi.org/10.1175/MWR-D-20-0254.1.
Zupanski, D., M. Zupanski, L. D. Grasso, R. Brummer, I. Jankov, D. Lindsey, M. Sengupta, and M. Demaria, 2011: Assimilating synthetic GOES-R radiances in cloudy conditions using an ensemble-based method. Int. J. Remote Sens., 32, 9637−9659, https://doi.org/10.1080/01431161.2011.572094.