Aagaard, K., and P. Greisman, 1975: Toward new mass and heat budgets for the Arctic Ocean. J. Geophys. Res., 80, 3821−3827, https://doi.org/10.1029/jc080i027p03821.
Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to northern hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.
Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477−496, https://doi.org/10.1007/s00382-005-0040-5.
Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 1498−1511, https://doi.org/10.1175/JAS3695.1.
Dai, H., H. Yang, and J. Yin, 2017: Roles of energy conservation and climate feedback in Bjerknes compensation: a coupled modeling study. Clim. Dyn., 49, 1513−1529, https://doi.org/10.1007/s00382-016-3386-y.
Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. Mcgee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Clim., 27, 3377−3392, https://doi.org/10.1175/JCLI-D-13-00499.1.
Farneti, R., and G. K. Vallis, 2013: Meridional energy transport in the coupled atmosphere-ocean system: Compensation and partitioning. J. Climate, 26, 7151−7166, https://doi.org/10.1175/JCLI-D-12-00133.1.
Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2011: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr, 39, 61−78, https://doi.org/10.1175/2007jpo3792.1.
Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the northern hemisphere. Nature Geoscience, 6, 940−944, https://doi.org/10.1038/ngeo1987.
Fučkar, N. S., S. P. Xie, R. Farneti, E. A. Maroon, and D. M. W. Frierson, 2013: Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J. Climate, 26, 4612−4629, https://doi.org/10.1175/JCLI-D-12-00294.1.
Gent, P. R., and J. C. Mcwilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150−155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.
Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 4395−4411, https://doi.org/10.1175/JCLI-D-16-0818.1.
Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943−948, https://doi.org/10.1175/1520-0469(2001)058<0943:tpotpe>2.0.co;2.
Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens, 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: Global impacts of biases in a coupled model. Climate Dyn., 48, 2279−2295, https://doi.org/10.1007/s00382-016-3205-5.
He, C. F., Z. Y. Liu, and A. X. Hu, 2019: The transient response of atmospheric and oceanic heat transports to anthropogenic warming. Nature Climate Change, 9, 222−226, https://doi.org/10.1038/s41558-018-0387-3.
Hwang, Y. T., S. P. Xie, C. Deser, and S. M. Kang, 2017: Connecting tropical climate change with Southern Ocean heat uptake. Geophys. Res. Lett., 44, 9449−9457, https://doi.org/10.1002/2017GL074972.
Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci., 110, 4935−4940, https://doi.org/10.1073/pnas.1213302110.
Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 3328−3345, https://doi.org/10.1175/1520-0485(2002)032<3328:toeht>2.0.co;2.
Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: No access global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Clim., 29, 4617−4636, https://doi.org/10.1175/JCLI-D-15-0358.1.
Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521−3532, https://doi.org/10.1175/2007JCLI2146.1.
Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. Npj Climate and Atmospheric Science, 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.
Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696−705, https://doi.org/10.1175/1520-0485(2000)030<0696:MHTBTS>2.0.CO;2.
Lembo, V., V. Lucarini, and F. Ragone, 2020: Beyond forcing scenarios: Predicting climate change through response operators in a coupled general circulation model. Scientific Reports, 10, 8668, https://doi.org/10.1038/s41598-020-65297-2.
Liu, F. K., Y. Y. Luo, J. Lu, and X. Q. Wan, 2017a: : Response of the tropical Pacific Ocean to El Niño versus global warming. Climate Dyn., 48, 935−956, https://doi.org/10.1007/s00382-016-3119-2.
Liu, F. K., Y. Y. Luo, J. Lu, O. Garuba, and X. Q. Wan, 2017b: Asymmetric response of the equatorial Pacific SST to climate warming and cooling. J. Climate, 30, 7255−7270, https://doi.org/10.1175/JCLI-D-17-0011.1.
Liu, W., J. Lu, S. P. Xie, and A. Fedorov, 2018b: : Southern Ocean Heat Uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 4727−4743, https://doi.org/10.1175/JCLI-D-17-0761.1.
Long, S.-M., S.-P. Xie, X.-T. Zheng, and Q. Y. Liu, 2014: Fast and slow responses to global warming: Sea surface temperature and precipitation patterns. J. Climate, 27, 285−299, https://doi.org/10.1175/JCLI-D-13-00297.1.
Lu, J., and B. Zhao, 2012: The role of oceanic feedback in the climate response to doubling CO2. J. Climate, 25, 7544−7563, https://doi.org/10.1175/JCLI-D-11-00712.1.
Luo, Y. Y., J. Lu, F. K. Liu, and W. Liu, 2015: Understanding the El Niño-like oceanic response in the tropical Pacific to global warming. Climate Dyn., 45, 1945−1964, https://doi.org/10.1007/s00382-014-2448-2.
Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 1967−1979, https://doi.org/10.1007/s00382-013-1767-z.
Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45−53, https://doi.org/10.1038/nature13636.
Schneider, T., 2017: Feedback of atmosphere-ocean coupling on shifts of the intertropical convergence zone. Geophys. Res. Lett., 44, 11644−11653, https://doi.org/10.1002/2017GL075817.
Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17, 209−217, https://doi.org/10.1175/1520-0442(2004)017<0209:TSOCR>2.0.CO;2.
Treguier, A. M., M. H. England, S. R. Rintoul, G. Madec, J. Le Sommer, and J. M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Science, 3, 491−507, https://doi.org/10.5194/os-3-491-2007.
Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433−3443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.
Yang, H. J., Q. Li, K. Wang, Y. Sun, and D. X. Sun, 2015: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 2751−2768, https://doi.org/10.1007/s00382-014-2380-5.
Yang, H. J., and H. J. Dai, 2015: Effect of wind forcing on the meridional heat transport in a coupled climate model: Equilibrium response. Climate Dyn., 45, 1451−1470, https://doi.org/10.1007/s00382-014-2393-0.
Yu, S., and M. S. Pritchard, 2019: A strong role for the AMOC in partitioning global energy transport and shifting ITCZ position in response to latitudinally discrete solar forcing in CESM1.2. J. Climate, 32, 2207−2226, https://doi.org/10.1175/JCLI-D-18-0360.1.