Auligné, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631−642, https://doi.org/10.1002/qj.56.
Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136(652), 1868−1885, https://doi.org/10.1002/qj.659.
Bauer, P., and Coauthors, 2011: Satellite cloud and precipitation assimilation at operational NWP centres. Quart. J. Roy. Meteor. Soc., 137, 1934−1951, https://doi.org/10.1002/qj.905.
Bessho, K., and Coauthors, 2016: An introduction to himawari-8/Y Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151−183, https://doi.org/10.2151/jmsj.2016-009.
Charlton-Perez, C., H. L. Cloke, and A. Ghelli, 2015: Rainfall: High-resolution observation and prediction. Meteorological Applications, 22, 1−2,
Cintineo, R. M., J. A. Otkin, T. A. Jones, S. Koch, and D. J. Stensrud, 2016: Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE. Mon. Wea. Rev., 144, 3159−3180, https://doi.org/10.1175/MWR-D-15-0366.1.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233−244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133(629), 1977−1991, https://doi.org/10.1002/qj.178.
Collard, A. D., and A. P. McNally, 2009: The assimilation of Infrared Atmospheric Sounding Interferometer radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 135(641), 1044−1058, https://doi.org/10.1002/qj.410.
Dee, D. P., 2004: Variational bias correction of satellite radiance data in the ECMWF system. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Reading, UK, 97−112.
Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3323−3343, https://doi.org/10.1256/qj.05.137.
Di, D., Y. F. Ai, J. Li, W. J. Shi, and N. M. Lu, 2016: Geostationary satellite-based 6.7 μm band best water vapor information layer analysis over the Tibetan Plateau. J. Geophys. Res., 121(9), 4600−4613, https://doi.org/10.1002/2016JD024867.
Eresmaa, R., J. Letertre-Danczak, C. Lupu, N. Bormann, and A. P. McNally, 2017: The assimilation of Cross-track Infrared Sounder radiances at ECMWF. Quart. J. Roy. Meteor. Soc., 143, 3177−3188, https://doi.org/10.1002/qj.3171.
Eyre, J., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo. 176, 30 pp.
Eyre, J., 1992. A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo. 186, 34 pp.
Geer, A. J., S. Migliorini, and M. Matricardi, 2019: All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmospheric Measurement Techniques, 12, 4903−4929,
Geng X. W., J. Z. Min, C. Yang, Y. B. Wang, and D. M. Xu, 2020: Analysis of FY-4A AGRI bias characteristics and correction experiment. Chinese Journal of Atmospheric Sciences, 44(4), 679−694, https://doi.org/10.3878/j.issn.1006-9895.1907.18254. (in Chinese with English abstract
Harris, B. A., and G. Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc., 127(574), 1453−1468, https://doi.org/10.1002/qj.49712757418.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999−2049, https://doi.org/10.1002/qj.3803.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of typhoon soudelor (2015). Mon. Wea. Rev., 146, 213−229, https://doi.org/10.1175/MWR-D-16-0357.1.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42, 129−151.
Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 1 4873−1 4890,
Iacono, M. J., J. S. Delamere, E. J. Mlawer, and S. A. Clough, 2004: Development and evaluation of RRTMG_SW, a shortwave radiative transfer model for general circulation model applications. Proc. Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico.
Kazumori, M., 2018: Assimilation of himawari-8 clear sky radiance data in JMA's global and mesoscale NWP systems. J. Meteor. Soc. Japan, 96, 173−192, https://doi.org/10.2151/jmsj.2018-037.
Lee, J.-R., J. Li, Z. L. Li, P. Wang, and J. L. Li, 2019: ABI water vapor radiance assimilation in a regional NWP Model by accounting for the surface impact. Earth and Space Science, 6, 1652−1666, https://doi.org/10.1029/2019EA000711.
Li, J., J. L. Li, J. Otkin, T. J. Schmit, and C.-Y. Liu, 2011: Warning information in a preconvection environment from the geostationary advanced infrared sounding system—A simulation study using the IHOP case. J. Appl. Meteorol. Climatol., 50, 776−783, https://doi.org/10.1175/2010JAMC2441.1.
Li, X., X. L. Zou, and M. J. Zeng, 2019: An alternative bias correction scheme for CrIS data assimilation in a regional model. Mon. Wea. Rev., 147(3), 809−839, https://doi.org/10.1175/MWR-D-18-0044.1.
Liu, J. J., H. Li, E. Kalnay, E. J. Kostelich, and I. Szunyogh, 2009: Univariate and multivariate assimilation of AIRS humidity retrievals with the local ensemble transform Kalman filter. Mon. Wea. Rev., 137, 3918−3932, https://doi.org/10.1175/2009MWR2791.1.
Lu, J. Z., T. Feng, J. Li, Z. L. Cai, X. J. Xu, L. Li, and J. L. Li, 2019: Impact of assimilating himawari-8-derived layered precipitable water with varying cumulus and microphysics parameterization schemes on the simulation of typhoon hato. J. Geophys. Res., 124(6), 3050−3071, https://doi.org/10.1029/2018JD029364.
Lupu, C., and A. McNally, 2011: Assimilation of radiance products from geostationary satellites: 1-year report. EUMETSAT/ECMWF Fellowship Programme Res. Rep. 21, 27 pp.
Ma, Z. Z., E. S. Maddy, B. L. Zhang, T. Zhu, and S. A. Boukabara, 2017: Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Oceanic Technol., 34, 797−815, https://doi.org/10.1175/JTECH-D-16-0136.1.
Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts. Bull. Amer. Meteor. Soc., 83, 407−430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.
Matricardi, M., F. Chevallier, G. Kelly, and J.-N. Thépaut, 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153−173, https://doi.org/10.1256/qj.02.181.
McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132(616), 935−957, https://doi.org/10.1256/qj.04.171.
Min, M., and Coauthors, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. Journal of Meteorological Research, 31(4), 708−719, https://doi.org/10.1007/s13351-017-6161-z.
Okamoto, K., 2017: Evaluation of IR radiance simulation for all-sky assimilation of Himawari-8/AHI in a mesoscale NWP system. Quart. J. Roy. Meteor. Soc., 143, 1517−1527, https://doi.org/10.1002/qj.3022.
Okamoto, K., Y. Sawada, and M. Kunii, 2019: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Quart. J. Roy. Meteor. Soc., 145, 745−766, https://doi.org/10.1002/qj.3463.
Otkin, J. A., and R. Potthast, 2019: Assimilation of all-sky SEVIRI infrared brightness temperatures in a regional-scale ensemble data assimilation system. Mon. Wea. Rev., 147, 4481−4509, https://doi.org/10.1175/MWR-D-19-0133.1.
Qi, L. B., J. J. Wu, and C. H. Shi, 2020: Rethink on forecast focus of a torrential rainfall event at Jianghuai region. Torrential Rain and Disasters, 39(6), 647−657, https://doi.org/10.3969/j.issn.1004-9045.2020.06.013. (in Chinese with English abstract
Qin, Z. K., and X. L. Zou, 2018: Direct assimilation of ABI infrared radiances in NWP models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 2022−2033, https://doi.org/10.1109/JSTARS.2018.2803810.
Qin, Z. K., X. L. Zou, and F. Z. Weng, 2013: Evaluating added benefits of assimilating GOES imager radiance data in GSI for coastal QPFs. Mon. Wea. Rev., 141, 75−92, https://doi.org/10.1175/MWR-D-12-00079.1.
Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 1407−1425, https://doi.org/10.1002/qj.1999.49712555615.
Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079−1096, https://doi.org/10.1175/BAMS-86-8-1079.
Szyndel, M. D. E., G. Kelly, and J. N. Thépaut, 2005: Evaluation of potential benefit of assimilation of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses. Atmospheric Science Letters, 6, 105−111, https://doi.org/10.1002/asl.98.
Tewari, M., and Coauthors, 2004: Implementation and verification of the Unified NOAH land surface model in the WRF model. Proc. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, 11−15.
Thépaut, J. N., 2003: Satellite data assimilation in numerical weather prediction: An overview. Proc. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, ECMWF, 75−96.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519−542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779−1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.
Wang, P., and Coauthors, 2015: Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP. J. Geophys. Res., 120, 5469−5484, https://doi.org/10.1002/2014JD022976.
Wang, X., M. Min, F. Wang, J. P. Guo, B. Li, and S. H. Tang, 2019: Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens., 57(11), 8827−8839, https://doi.org/10.1109/TGRS.2019.2923247.
Wang, Y. B., Z. Q. Liu, S. Yang, J. Z. Min, L. Q. Chen, Y. D. Chen, and T. Zhang, 2018: Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over North China. J. Geophys. Res., 123, 3374−3394, https://doi.org/10.1002/2017JD027697.
Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799−3807, https://doi.org/10.1175/2007JAS2112.1.
Weng, F. Z., X. W. Yu, Y. H. Duan, J. Yang, and J. J. Wang, 2020: Advanced radiative transfer modeling system (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci., 37, 131−136, https://doi.org/10.1007/s00376-019-9170-2.
Xu, D. M., Z. Q. Liu, X.-Y. Huang, J. Z. Min, and H. L. Wang, 2013: Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys., 122, 1−18, https://doi.org/10.1007/s00703-013-0276-2.
Xu, D. M., Z. Q. Liu, S. Y. Fan, M. Chen, and F. F. Shen, 2021: Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China. Adv. Atmos. Sci., 38, 661−676, https://doi.org/10.1007/s00376-020-0219-z.
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4,. Bull. Amer. Meteor. Soc., 98, 1637−1658, https://doi.org/10.1175/BAMS-D-16-0065.1.
Yin, R. Y., W. Han, Z. Q. Gao, and J. Li, 2021: Impact of high temporal resolution FY-4A geostationary interferometric infrared sounder (GIIRS) radiance measurements on typhoon forecasts: Maria (2018) case with GRAPES global 4D-var assimilation system. Geophys. Res. Lett., 48, e2021GL093672, https://doi.org/10.1029/2021GL093672.
Zapotocny, T. H., J. A. Jung, J. F. Le Marshall, and R. E. Treadon, 2007: A two-season impact study of satellite and in situ data in the NCEP global data assimilation system. Wea. Forecasting, 22, 887−909, https://doi.org/10.1175/WAF1025.1.
Zhong, J.-Q., B. Lu, W. Wang, C.-C. Huang, and Y. Yang, 2020: Impact of soil moisture on winter 2-m temperature forecasts in northern China. Journal of Hydrometeorology, 21, 597−614, https://doi.org/10.1175/JHM-D-19-0060.1.
Zou, X. L., F. Z. Weng, and Z. K. Qin, 2017: Direct assimilation of AHI and ABI infrared radiances in NWP models. Proc. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, IEEE, 290−292,