Arakawa A., V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model.Methods in Computational Physics, Volume 17, J. Chang, Ed. Academic Press, 173- 265.http://www.sciencedirect.com/science/article/pii/B9780124608177500094
Baumgardner J. R., P. O. Frederickson, 1985: Icosahedral discretization of the two-sphere. SIAM Journal on Numerical Analysis, 22, 1107- 1115.http://www.jstor.org/stable/2157540
Bleck, R., Coauthors, 2015: A vertically flow-following icosahedral grid model for medium-range and seasonal prediction.Part I: Model description. Mon. Wea. Rev., 143, 2386- 2403.http://adsabs.harvard.edu/abs/2015MWRv..143.2386B
Bonaventura L., T. Ringler, 2005: Analysis of discrete shallow-water models on geodesic delaunay grids with C-type staggering.Mon. Wea. Rev., 133, 2351- 2373.http://adsabs.harvard.edu/abs/2005MWRv..133.2351B
Boris J. P., D. L. Book, 1973: Flux-corrected transport.I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys., 11, 38- 69.http://www.sciencedirect.com/science/article/pii/0021999173901472
Chen C. G., J. Z. Bin, F. Xiao, X. L. Li, and X. S. Shen, 2014: A global shallow-water model on an icosahedral-hexagonal grid by a multi-moment constrained finite-volume scheme.Quart. J. Roy. Meteor. Soc., 140, 639- 650.http://onlinelibrary.wiley.com/doi/10.1002/qj.2157/pdf
Cullen M. J. P., 1974: Integrations of the primitive equations on a sphere using the finite element method.Quart. J. Roy. Meteor. Soc., 100, 555- 562.http://onlinelibrary.wiley.com/doi/10.1002/qj.49710042605/full
Du Q., V. Faber, and M. Gunzburger, 1999: Centroidal voronoi tessellations: Applications and algorithms. SIAM Review, 41, 637- 676.
Du Q., M. D. Gunzburger, and L. L. Ju, 2003: Constrained centroidal voronoi tessellations for surfaces. SIAM Journal on Scientific Computing, 24, 1488- 1506.http://www.researchgate.net/publication/228569877_Centroidal_voronoi_tessellations?ev=sim_pub
Dubey S., R. Mittal, and P. H. Lauritzen, 2014: A flux-form conservative semi-Lagrangian multitracer transport scheme (FF-CSLAM) for icosahedral-hexagonal grids. Journal of Advances in Modeling Earth Systems, 6, 332- 356.http://onlinelibrary.wiley.com/doi/10.1002/2013MS000259/full
Durran D. R., 2010: Numerical Methods for Fluid Dynamics: With Applications to Geophysics.2nd ed.Springer, 516 pp.http://www.researchgate.net/publication/267469007_Numerical_Methods_for_Fluid_Dynamics_With_Applications_to_Geophysics
Gassmann A., 2013: A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency.Quart. J. Roy. Meteor. Soc., 139, 152- 175.http://onlinelibrary.wiley.com/doi/10.1002/qj.1960/full
Heikes R., D. A. Randall, 1995a: Numerical integration of the shallow-water equations on a twisted icosahedral grid.Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 1862- 1880.http://adsabs.harvard.edu/abs/1995MWRv..123.1862H
Heikes R., D. A. Randall, 1995b: Numerical integration of the shallow-water equations on a twisted icosahedral grid.Part II. A detailed description of the grid and an analysis of numerical accuracy. Mon. Wea. Rev., 123, 1881- 1887.http://adsabs.harvard.edu/abs/1995MWRv..123.1881H
Heikes R. P., D. A. Rand all, and C. S. Konor, 2013: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver.Mon. Wea. Rev., 141, 4450- 4469.http://adsabs.harvard.edu/abs/2013MWRv..141.4450H
Heinzeller D., M. G. Duda, and H. Kunstmann, 2016: Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: An extreme scaling experiment. Geoscientific Model Development, 9, 77- 110.http://adsabs.harvard.edu/abs/2015GMDD....8.6987H
Hundsdorfer W., B. Koren, M. vanLoon, and J. G. Verwer, 1995: A positive finite-difference advection scheme.J. Comput. Phys., 117, 35- 46.http://www.sciencedirect.com/science/article/pii/S002199918571042X
Ii S., F. Xiao, 2010: A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid.J. Comput. Phys., 229, 1774- 1796.http://www.sciencedirect.com/science/article/pii/S0021999109006275
Lauritzen, P. H., Coauthors, 2014: A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes. Geoscientific Model Development, 7, 105- 145.http://adsabs.harvard.edu/abs/2014GMD.....7..105L
Lax P., B. Wendroff, 1960: Systems of conservation laws.Commun. Pure Appl. Math., 13, 217- 237.http://www.ams.org/mathscinet-getitem?mr=1775057
Lee J.-L., A. E. MacDonald, 2009: A finite-volume icosahedral shallow-water model on a local coordinate.Mon. Wea. Rev., 137, 1422- 1437.http://adsabs.harvard.edu/abs/2009MWRv..137.1422L
Leonard B. P., 1991: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88, 17- 74.http://www.sciencedirect.com/science/article/pii/004578259190232U
Li J.-G., 2008: Upstream nonoscillatory advection schemes.Mon. Wea. Rev., 136, 4709- 4729.http://adsabs.harvard.edu/abs/2008MWRv..136.4709L
Lin S.-J., R. B. Rood, 1996: Multidimensional flux-form semi-lagrangian transport schemes.Mon. Wea. Rev., 124, 2046- 2070.http://adsabs.harvard.edu/abs/1996MWRv..124.2046L
Lin S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of the van leer-type transport schemes and its application to the moisture transport in a general circulation model.Mon. Wea. Rev., 122, 1575- 1593.http://adsabs.harvard.edu/abs/1994MWRv..122.1575L
Lipscomb W. H., T. D. Ringler, 2005: An incremental remapping transport scheme on a spherical geodesic grid.Mon. Wea. Rev., 133, 2335- 2350.http://adsabs.harvard.edu/abs/2005MWRv..133.2335L
Löhner, R., K. Morgan, M. Vahdati, J. P. Boris, D. L. Book, 1988: FEM-FCT: Combining unstructured grids with high resolution. Communications in Applied Numerical Methods, 4, 717- 729.http://onlinelibrary.wiley.com/doi/10.1002/cnm.1630040605/pdf
Majewski, D., Coauthors, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests.Mon. Wea. Rev., 130, 319- 338.http://adsabs.harvard.edu/abs/2002mwrv..130..319m
Masuda Y., H. Ohnishi, 1987: An integration scheme of the primitive equations model with an icosahedral-hexagonal grid system and its application to the shallow water equations.Short- and Medium-Range Numerical Weather Prediction, T. Matsuno, Ed. Meteorological Society of Japan, 317- 326.http://www.researchgate.net/publication/306204309_An_integration_scheme_of_the_primitive_equation_model_with_an_icosahedral-hexagonal_grid_system_and_its_application_to_the_shallow_water_equations
Miura H., 2007: An upwind-biased conservative advection scheme for spherical hexagonal-pentagonal grids.Mon. Wea. Rev., 135, 4038- 4044.http://adsabs.harvard.edu/abs/2007MWRv..135.4038M
Miura H., M. Kimoto, 2005: A comparison of grid quality of optimized spherical hexagonal-pentagonal geodesic grids.Mon. Wea. Rev., 133, 2817- 2833.http://adsabs.harvard.edu/abs/2005MWRv..133.2817M
Miura H., W. C. Skamarock, 2013: An upwind-biased transport scheme using a quadratic reconstruction on spherical icosahedral grids.Mon. Wea. Rev., 141, 832- 847.http://adsabs.harvard.edu/abs/2013mwrv..141..832m
Miura H., M. Satoh, H. Tomita, A. T. Noda, T. Nasuno, and S.-I. Iga, 2007: A short-duration global cloud-resolving simulation with a realistic land and sea distribution.Geophys. Res. Lett., 34, L02804.http://onlinelibrary.wiley.com/doi/10.1029/2006GL027448/full
Nair R. D., P. H. Lauritzen, 2010: A class of deformational flow test cases for linear transport problems on the sphere.J. Comput. Phys., 229, 8868- 8887.http://xueshu.baidu.com/s?wd=paperuri%3A%285d0f392acf41eb9251fe0ccd0025bf2e%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DArticleURL%26md5%3Dbd2440c2b1d1c5bdaa7934a52fcfcf07%26_udi%3DB6WHY-50T9X3Y-5%26_user%3D10%26_coverDate%3D11%252F20%252F2010%26_rdoc%3D13%26_fmt%3Dhigh%26_orig%3Dbrowse%26_origin%3Dbrowse%26_zone%3Drslt_list_item%26_srch%3Ddoc-info%28%2523toc%25236863%25232010%25239977&ie=utf-8&sc_us=1079236727818677287
Niwa Y., H. Tomita, M. Satoh, and R. Imasu, 2011: A three-dimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport.J. Meteor. Soc. Japan. Ser.II, 89, 255- 268.http://ci.nii.ac.jp/naid/40018855002
Peixoto P. S., S. R. M. Barros, 2013: Analysis of grid imprinting on geodesic spherical icosahedral grids.J. Comput. Phys., 237, 61- 78.http://www.sciencedirect.com/science/article/pii/S0021999112007218
Putman W. M., S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids.J. Comput. Phys., 227, 55- 78.http://www.sciencedirect.com/science/article/pii/S0021999107003105
Rand all, D. A., T. D. Ringler, R. P. Heikes, P. Jones, J. Baumgardner, 2002: Climate modeling with spherical geodesic grids. Computing in Science & Engineering, 4, 32- 41.http://scitation.aip.org/content/aip/journal/cise/4/5/10.1109/MCISE.2002.1032427
Renka, J., Robert, 1997: Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere. ACM Transactions on Mathematical Software, 23, 416- 434.http://dl.acm.org/citation.cfm?id=275329
Ringler T., L. L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dynamics, 58, 475- 498.http://link.springer.com/article/10.1007/s10236-008-0157-2
Ringler T. D., D. A. Randall, 2002: A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid.Mon. Wea. Rev., 130, 1397- 1410.http://ci.nii.ac.jp/naid/10013161723
Ringler T. D., R. P. Heikes, and D. A. Randall, 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores.Mon. Wea. Rev., 128, 2471- 2490.http://adsabs.harvard.edu/abs/2000MWRv..128.2471R
Rípodas, P., Coauthors, 2009: Icosahedral Shallow Water Model (ICOSWM): Results of shallow water test cases and sensitivity to model parameters. Geoscientific Model Development, 2, 231- 251.http://www.oalib.com/paper/1376917
Sadourny R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids.Mon. Wea. Rev., 100, 136- 144.http://adsabs.harvard.edu/abs/1972MWRv..100..136S
Sadourny R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere.Mon. Wea. Rev., 96, 351- 356.http://adsabs.harvard.edu/abs/1968MWRv...96..351S
Satoh M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations.J. Comput. Phys., 227, 3486- 3514.http://www.sciencedirect.com/science/article/pii/S0021999107000654
Satoh, M., Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Progress in Earth and Planetary Science, 1, 18.http://link.springer.com/article/10.1186/s40645-014-0018-1
Shi H. B., R. C. Yu, J. Li, and T. J. Zhou, 2009: Development of a regional climate model (CREM) and evaluation on its simulation of summer climate over Eastern China.J. Meteor. Soc.Japan, 87, 381- 401.http://www.cabdirect.org/abstracts/20093230373.html
Skamarock W. C., M. Menchaca, 2010: Conservative transport schemes for spherical geodesic grids: High-order reconstructions for forward-in-time schemes.Mon. Wea. Rev., 138, 4497- 4508.http://adsabs.harvard.edu/abs/2010MWRv..138.4497S
Skamarock W. C., A. Gassmann, 2011: Conservative transport schemes for spherical geodesic grids: High-order flux operators for ode-based time integration.Mon. Wea. Rev., 139, 2962- 2975.http://adsabs.harvard.edu/abs/2011MWRv..139.2962S
Skamarock W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering.Mon. Wea. Rev., 140, 3090- 3105.http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1175/MWR-D-11-00215.1
Smolarkiewicz P. K., 1984: A fully multidimensional positive definite advection transport algorithm with small implicit diffusion.J. Comput. Phys., 54, 325- 362.http://www.sciencedirect.com/science/article/pii/0021999184901219
Smolarkiewicz P. K., 2006: Multidimensional positive definite advection transport algorithm: an overview. International Journal for Numerical Methods in Fluids, 50, 1123- 1144.http://onlinelibrary.wiley.com/doi/10.1002/fld.1071/full
Smolarkiewicz P. K., J. Szmelter, 2005: MPDATA: An edge-based unstructured-grid formulation.J. Comput. Phys., 206, 624- 649.http://www.sciencedirect.com/science/article/pii/S0021999105000082
Smolarkiewicz P. K., W. Deconinck, M. Hamrud, C. Kuhnlein, G. Mozdzynski, J. Szmelter, and N. Wedi, 2015: An all-scale finite-volume module for the IFS. ECMWF Newsletter, No. 145, 24- 29.http://www.researchgate.net/publication/286239146_An_all-scale_finite_volume_module_for_the_IFS
Steppeler J., P. Rpodas B. Jonkheid, and S. Thomas, 2008: Third-order finite-difference schemes on icosahedral-type grids on the sphere.Mon. Wea. Rev., 136, 2683- 2698.http://adsabs.harvard.edu/abs/2008MWRv..136.2683S
Stuhne G. R., W. R. Peltier, 1999: New icosahedral grid-point discretizations of the shallow water equations on the sphere.J. Comput. Phys., 148, 23- 58.http://www.sciencedirect.com/science/article/pii/S0021999198961198
Thuburn J., 1995: Dissipation and cascades to small scales in numerical models using a shape-preserving advection scheme.Mon. Wea. Rev., 123, 1888- 1903.http://adsabs.harvard.edu/abs/1995MWRv..123.1888T
Thuburn J., 1997: A PV-based shallow-water model on a hexagonal-icosahedral grid.Mon. Wea. Rev., 125, 2328- 2347.http://xueshu.baidu.com/s?wd=paperuri%3A%282326eaaf8f0a4ab7262af2666013627e%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fonlinelibrary.wiley.com%2Fresolve%2Freference%2FADS%3Fid%3D1997MWRv..125.2328T&ie=utf-8&sc_us=11057240254505690956
Tomita H., M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dynamics Research, 34, 357- 400.http://www.sciencedirect.com/science/article/pii/S0169598304000310
Tomita H., M. Tsugawa, M. Satoh, and K. Goto, 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics.J. Comput. Phys., 174, 579- 613.http://www.sciencedirect.com/science/article/pii/S0021999101968974
van Leer, B., 1977: Towards the ultimate conservative difference scheme.IV. A new approach to numerical convection. J. Comput. Phys., 23, 276- 299.http://www.sciencedirect.com/science/article/pii/002199917790095X
Walko R. L., R. Avissar, 2008a: The ocean-land-atmosphere model (OLAM).Part I: Shallow-water tests. Mon. Wea. Rev., 136, 4033- 4044.http://adsabs.harvard.edu/abs/2008MWRv..136.4033W
Walko R. L., R. Avissar, 2008b: The ocean-land-atmosphere model (OLAM).Part II: Formulation and tests of the nonhydrostatic dynamic core. Mon. Wea. Rev., 136, 4045- 4062.http://adsabs.harvard.edu/abs/2008MWRv..136.4045W
Wan, H., Coauthors, 2013: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids - Part 1: Formulation and performance of the baseline version. Geoscientific Model Development, 6, 735- 763.http://www.oalib.com/paper/2156210
Wang B., H. Wan, Z. Z. Ji, X. Zhang, R. C. Yu, Y. Q. Yu, and H. T. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods.Science in China Series A-Mathematics, 47, 4- 21.http://d.wanfangdata.com.cn/Periodical/zgkx-ea2004z1002
Weller H., H. G. Weller, and A. Fournier, 2009: Voronoi, delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere. Mon. Wea. Rev., 137, 4208- 4224.http://adsabs.harvard.edu/abs/2009MWRv..137.4208W
Williamson D. L., 1968: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20, 642- 653.http://onlinelibrary.wiley.com/doi/10.1111/j.2153-3490.1968.tb00406.x/abstract
Williamson D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry.J. Comput. Phys., 102, 211- 224.http://www.sciencedirect.com/science/article/pii/002199919290060C
Xiao C., Y. Q. Yu, F. H. Wu, and H. L. Liu, 2008: An oceanic general circulation model's sensitivity to advection schemes and spatial resolution. Acta Meteorologica Sinica, 66, 329- 341 (in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB200803003.htm
Yu R. C., 1994: A two-step shape-preserving advection scheme.Adv. Atmos. Sci. 11,479-490,doi: 10.1007/BF02658169.http://www.cnki.com.cn/Article/CJFDTotal-DQJZ199404012.htm
Yu R. C., 1995: Application of a shape-preserving advection scheme to the moisture equation in an E-grid regional forecast model.Adv. Atmos. Sci. 12,13-19,doi: 10.1007/BF02661283.http://www.cnki.com.cn/Article/CJFDTotal-DQJZ199501001.htm
Yu R. C., Y. P. Xu, 2004: AREM and its simulations on the daily rainfall in summer in 2003. Acta Meteorologica Sinica, 62, 715- 723 (in Chinese with English abstract).http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB200406000.htm
Yu R. C., J. Li, Y. Zhang, and H. M. Chen, 2015: Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5.Climate Dyn., 45, 2937- 2948.http://link.springer.com/10.1007/s00382-015-2515-3
Zalesak S. T., 1979: Fully multidimensional flux-corrected transport algorithms for fluids.J. Comput. Phys., 31, 335- 362.http://www.sciencedirect.com/science/article/pii/0021999179900512
Zäangl, G., D. Reinert, P. Rípodas, M. Baldauf, 2015: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core.Quart. J. Roy. Meteor. Soc., 141, 563- 579.http://onlinelibrary.wiley.com/doi/10.1002/qj.2378/pdf
Zhang Y., J. Li, 2016: Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model.Climate Dyn., 47, 2923- 2934.http://link.springer.com/10.1007/s00382-016-3005-y
Zhang Y., R. Yu, J. Li, and H. Chen, 2013: An implementation of a leaping-point Two-step Shape-Preserving Advection Scheme in the high-resolution spherical latitude-longitude grid. Acta Meteorologica Sinica, 71, 1089- 1102. (in Chinese with English abstract)http://www.researchgate.net/publication/261363773_An_implementation_of_a_leaping-point_Two-step_Shape-Preserving_Advection_Scheme_in_the_high-resolution_spherical_latitude-longitude_grid?ev=auth_pub