Banakh, V. A., A. Brewer, E. L. Pichugina, and I. N. Smalikho, 2010: Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal. Atmospheric and Oceanic Optics, 23, 381−388, https://doi.org/10.1134/s1024856010050076.
Banakh, V. A., I. N. Smalikho, and A. V. Falits, 2017: Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar. Optics Express, 25, 22 679−22 692, https://doi.org/10.1364/oe.25.022679.
Banakh, V. A., I. N. Smalikho, and A. V. Falits, 2020: Estimation of the height of turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam. Atmospheric Measurement Techniques Discussions, https://doi.org/10.5194/amt-2020-259.
Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20, 1092−1105, https://doi.org/10.1175/1520-0426(2003)020<1092:fbltao>2.0.co;2.
Chambers, D. M., 1997: Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations. Optics Express, 1, 60−67, https://doi.org/10.1364/oe.1.000060.
Coen, M. C., C. Praz, A. Haefele, D. Ruffieux, P. Kaufmann, and B. Calpini, 2014: Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmospheric Chemistry and Physics, 14, 13 205−13 221, https://doi.org/10.5194/acp-14-13205-2014.
Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteorol. Climatol., 39, 1233−1247, https://doi.org/10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2.
Emeis, S., C. Jahn, C. Münkel, C. Münsterer, and K. Schäfer, 2007: Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. Meteor. Z., 16, 415−424, https://doi.org/10.1127/0941-2948/2007/0203.
Emeis, S., K. Schäfer, and C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height−A review. Meteor. Z., 17, 621−630, https://doi.org/10.1127/0941-2948/2008/0312.
Flamant, C., J. Pelon, P. H. Flamant, and P. Durand, 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound. -Layer Meteorol., 83, 247−284, https://doi.org/10.1023/a:1000258318944.
Guo, J. P., and Coauthors, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmospheric Chemistry and Physics, 16, 13 309−13 319, https://doi.org/10.5194/acp-16-13309-2016.
Hooper, W. P., and E. W. Eloranta, 1986: Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measurements with radiosonde and kytoon. J. Appl. Meteorol. Climatol., 25, 990−1001, https://doi.org/10.1175/1520-0450(1986)025<0990:lmowit>2.0.co;2.
Huang, M., and Coauthors, 2017: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Bound. -Layer Meteorol., 162, 503−522, https://doi.org/10.1007/s10546-016-0205-2.
Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 7−9.
Leung, M. Y. T., W. Zhou, C. M. Shun, and P. W. Chan, 2018: Large-scale circulation control of the occurrence of low-level turbulence at Hong Kong international airport. Adv. Atmos. Sci., 35, 435−444, https://doi.org/10.1007/s00376-017-7118-y.
Lewis, J. R., E. J. Welton, A. M. Molod, and E. Joseph, 2013: Improved boundary layer depth retrievals from MPLNET. J. Geophys. Res., 118, 9870−9879, https://doi.org/10.1002/jgrd.50570.
Li, H., Y. Yang, X. M. Hu, Z. W. Huang, G. Y. Wang, B. D. Zhang, and T. J. Zhang, 2017: Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. J. Geophys. Res., 122, 4578−4593, https://doi.org/10.1002/2016jd025620.
Li, Z. Q., and Coauthors, 2016: Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements. Remote Sensing of Environment, 173, 59−68, https://doi.org/10.1016/j.rse.2015.11.019.
Luo, T., Z. E. Wang, D. M. Zhang, and B. Chen, 2016: Marine boundary layer structure as observed by A-train satellites. Atmospheric Chemistry and Physics, 16, 5891−5903, https://doi.org/10.5194/acp-16-5891-2016.
Manninen, A., T. Marke, M. Tuononen, and E. J. O'Connor, 2018: Atmospheric boundary layer classification with Doppler lidar. J. Geophys. Res., 123, 8172−8189, https://doi.org/10.1029/2017jd028169.
Melfi, S. H., J. D. Spinhirne, S. H. Chou, and S. P. Palm, 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Appl. Meteorol. Climatol., 24, 806−821, https://doi.org/10.1175/1520-0450(1985)024<0806:loovoc>2.0.co;2.
O’Connor, E. J., A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 1652−1664, https://doi.org/10.1175/2010jtecha1455.1.
Peña, A., S. E. Gryning, and A. N. Hahmann, 2013: Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site. J. Geophys. Res., 118, 1924−1940, https://doi.org/10.1002/jgrd.50175.
Sathe, A., and J. Mann, 2013: A review of turbulence measurements using ground-based wind lidars. Atmospheric Measurement Techniques, 6, 3147−3167, https://doi.org/10.5194/amt-6-3147-2013.
Schween, J. H., A. Hirsikko, U. Löhnert, and S. Crewell, 2014: Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmospheric Measurement Techniques, 7, 3685−3704, https://doi.org/10.5194/amt-7-3685-2014.
Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001−1027, https://doi.org/10.1016/s1352-2310(99)00349-0.
Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009jd013680.
Smalikho, I. N., and V. A. Banakh, 2017: Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer. Atmospheric Measurement Techniques, 10, 4191−4208, https://doi.org/10.5194/amt-10-4191-2017.
Steyn, D. G., M. Baldi, and R. M. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16, 953−959, https://doi.org/10.1175/1520-0426(1999)016<0953:tdomld>2.0.co;2.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 9−16.
Su, T. N., Z. Q. Li, and R. Kahn, 2020: A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions. Remote Sens. Environ., 237, 111519, https://doi.org/10.1016/j.rse.2019.111519.
Vakkari, V., E. J. O'Connor, A. Nisantzi, R. E. Mamouri, and D. G. Hadjimitsis, 2015: Low-level mixing height detection in coastal locations with a scanning Doppler lidar. Atmospheric Measurement Techniques, 8, 1875−1885, https://doi.org/10.5194/amt-8-1875-2015.
Wang, C., and Coauthors, 2017: 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Optics Express, 25, 20 663−20 674, https://doi.org/10.1364/oe.25.020663.
Wang, C., H. Y. Xia, Y. P. Liu, S. F. Lin, and X. K. Dou, 2018: Spatial resolution enhancement of coherent Doppler wind lidar using joint time–frequency analysis. Optics Communications, 424, 48−53, https://doi.org/10.1016/j.optcom.2018.04.042.
Wang, C., and Coauthors, 2019: Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmospheric Measurement Techniques, 12, 3303−3315, https://doi.org/10.5194/amt-12-3303-2019.
Wei, T. W., and Coauthors, 2019: Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Optics Express, 27, 31 235−31 245, https://doi.org/10.1364/oe.27.031235.
Yang, Y. J., and Coauthors, 2020: Diurnal evolution of the wintertime boundary layer in urban Beijing, China: Insights from doppler lidar and a 325-m meteorological tower. Remote Sensing, 12, 3935, https://doi.org/10.3390/rs12233935.
Yuan, J. L., H. Y. Xia, T. W. Wei, L. Wang, B. Yue, and Y. B. Wu, 2020: Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar. Optics Express, 28, 37 406−37 418, https://doi.org/10.1364/oe.412809.