Bzdek, B. R., D. P. Ridge, and M. V. Johnston, 2010: Amine exchange into ammonium bisulfate and ammonium nitrate nuclei. Atmospheric Chemistry and Physics, 10, 3495−3503, https://doi.org/10.5194/acp-10-3495-2010.
Calderón, S. M., N. D. Poor, and S. W. Campbell, 2007: Estimation of the particle and gas scavenging contributions to wet deposition of organic nitrogen. Atmos. Environ., 41, 4281−4290, https://doi.org/10.1016/j.atmosenv.2006.06.067.
Chen, J. M., and Coauthors, 2017: A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000−1034, https://doi.org/10.1016/j.scitotenv.2016.11.025.
Dai, Q. L., and Coauthors, 2018: Chemical nature of PM2.5 and PM10 in Xi'an, China: Insights into primary emissions and secondary particle formation. Environmental Pollution, 240, 155−166, https://doi.org/10.1016/j.envpol.2018.04.111.
Facchini, M. C., and Coauthors, 2008: Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol., 42, 9116−9121, https://doi.org/10.1021/es8018385.
Ge, S. S., and Coauthors, 2019: Abundant NH3 in China enhances atmospheric HONO production by promoting the heterogeneous reaction of SO2 with NO2. Environ. Sci. Technol., 53, 14 339−14 347, https://doi.org/10.1021/acs.est.9b04196.
Ge, X. L., A. S. Wexler, and S. L. Clegg, 2011a: Atmospheric amines—Part I. A review. Atmos. Environ., 45, 524−546, https://doi.org/10.1016/j.atmosenv.2010.10.012.
Ge, X. L., A. S. Wexler, and S. L. Clegg, 2011b: Atmospheric amines—Part II. Thermodynamic properties and gas/particle partitioning. Atmos. Environ., 45, 561−577, https://doi.org/10.1016/j.atmosenv.2010.10.013.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China, 2012: GB 3095−2012 Ambient air quality standard. China Environmental Science Press, Beijing.
Greim, H., D. Bury, H.-J. Klimisch, M. Oeben-Negele, and K. Ziegler-Skylakakis, 1998: Toxicity of aliphatic amines: Structure-activity relationship. Chemosphere, 36, 271−295, https://doi.org/10.1016/S0045-6535(97)00365-2.
Hemmilä, M., and Coauthors, 2018: Amines in boreal forest air at SMEAR II station in Finland. Atmospheric Chemistry and Physics, 18, 6367−6380, https://doi.org/10.5194/acp-18-6367-2018.
Hu, Q. J., P. R. Yu, Y. J. Zhu, K. Li, H. W. Gao, and X. H. Yao, 2015: Concentration, size distribution, and formation of trimethylaminium and dimethylaminium ions in atmospheric particles over marginal seas of China. J. Atmos. Sci., 72, 3487−3498, https://doi.org/10.1175/JAS-D-14-0393.1.
Huang, X. F., C. R. Deng, G. S. Zhuang, J. Lin, and M. X. Xiao, 2016: Quantitative analysis of aliphatic amines in urban aerosols based on online derivatization and high performance liquid chromatography. Environmental Science: Processes & Impacts, 18, 796−801, https://doi.org/10.1039/C6EM00197A.
Jaeckels, J. M., M.-S. Bae, and J. J. Schauer, 2007: Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environ. Sci. Technol., 41, 5763−5769, https://doi.org/10.1021/es062536b.
Kieloaho, A.-J., H. Hellén, H. Hakola, H. E. Manninen, T. Nieminen, M. Kulmala, and M. Pihlatie, 2013: Gas-phase alkylamines in a boreal Scots pine forest air. Atmos. Environ., 80, 369−377, https://doi.org/10.1016/j.atmosenv.2013.08.019.
Kupiainen, O., I. K. Ortega, T. Kurtén, and H. Vehkamäki, 2012: Amine substitution into sulfuric acid - ammonia clusters. Atmospheric Chemistry and Physics, 12, 3591−3599, https://doi.org/10.5194/acp-12-3591-2012.
Li, F., H.-Y. Liu, C.-H. Xue, X.-Q. Xin, J. Xu, Y.-G. Chang, Y. Xue, and L.-A. Yin, 2009: Simultaneous determination of dimethylamine, trimethylamine and trimethylamine-n-oxide in aquatic products extracts by ion chromatography with non-suppressed conductivity detection. Journal of Chromatography A, 1216, 5924−5926, https://doi.org/10.1016/j.chroma.2009.06.038.
Li, H., and Coauthors, 2020: Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. Chemosphere, 245, 125554, https://doi.org/10.1016/j.chemosphere.2019.125554.
Lidbury, I., J. C. Murrell, and Y. Chen, 2014: Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 111, 2710−2715, https://doi.org/10.1073/pnas.1317834111.
Liu, F., Q. Zhang, R. J. van der A, B. Zheng, D. Tong, L. Yan, Y. X. Zheng, and K. B. He, 2016: Recent reduction in NOx emissions over China: Synthesis of satellite observations and emission inventories. Environmental Research Letters, 11, 114002, https://doi.org/10.1088/1748-9326/11/11/114002.
Liu, F. X., and Coauthors, 2017: Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China. Atmos. Environ., 171, 279−288, https://doi.org/10.1016/j.atmosenv.2017.10.016.
Liu, F. X., and Coauthors, 2018: Gas-to-particle partitioning of atmospheric amines observed at a mountain site in southern China. Atmos. Environ., 195, 1−11, https://doi.org/10.1016/j.atmosenv.2018.09.038.
Liu, X. G., and Coauthors, 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmospheric Chemistry and Physics, 13, 4501−4514, https://doi.org/10.5194/acp-13-4501-2013.
Liu, Z., and Coauthors, 2020: Size‐resolved mixing states and sources of amine‐containing particles in the East China Sea. J. Geophys. Res. Atmos., 125(18), e2020JD033162, https://doi.org/10.1029/2020JD033162.
Lu, Z. J., Q. Y. Liu, Y. Xiong, F. Huang, J. B. Zhou, and J. J. Schauer, 2018: A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models. Environmental Pollution, 238, 39−51, https://doi.org/10.1016/j.envpol.2018.02.091.
Müller, C., Y. Iinuma, J. Karstensen, D. van Pinxteren, S. Lehmann, T. Gnauk, and H. Herrmann, 2009: Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmospheric Chemistry and Physics, 9, 9587−9597, https://doi.org/10.5194/acp-9-9587-2009.
Neff, J. C., E. A. Holland, F. J. Dentener, W. H. McDowell, and K. M. Russell, 2002: The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle? Biogeochemistry, 57, 99−136, https://doi.org/10.1023/A:1015791622742.
Nielsen, C. J., H. Herrmann, and C. Weller, 2012: Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chemical Society Reviews, 41, 6684−6704, https://doi.org/10.1039/C2CS35059A.
Pachon, J. E., R. J. Weber, X. L. Zhang, J. A. Mulholland, and A. G. Russell, 2013: Revising the use of potassium (K) in the source apportionment of PM2.5. Atmospheric Pollution Research, 4, 14−21, https://doi.org/10.5094/APR.2013.002.
Pan, B. B., S. K. Lam, A. Mosier, Y. Q. Luo, and D. L. Chen, 2016: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems & Environment, 232, 283−289, https://doi.org/10.1016/j.agee.2016.08.019.
Pankow, J. F., 2015: Phase considerations in the gas/particle partitioning of organic amines in the atmosphere. Atmos. Environ., 122, 448−453, https://doi.org/10.1016/j.atmosenv.2015.09.056.
Schade, G. W., and P. J. Crutzen, 1995: Emission of aliphatic amines from animal husbandry and their reactions: Potential source of N2O and HCN. Journal of Atmospheric Chemistry, 22, 319−346, https://doi.org/10.1007/BF00696641.
Sellegri, K., M. Hanke, B. Umann, F. Arnold, and M. Kulmala, 2005: Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmospheric Chemistry and Physics, 5, 373−384, https://doi.org/10.5194/acp-5-373-2005.
Shen, W. C., and Coauthors, 2017: C1-C2 alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta Region of China. Environmental Pollution, 230, 12−21, https://doi.org/10.1016/j.envpol.2017.06.034.
Sorooshian, A., and Coauthors, 2009: On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California. Global Biogeochemical Cycles, 23, GB4007, https://doi.org/10.1029/2009GB003464.
Tang, X. C., and Coauthors, 2013: NO3 radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines. Atmos. Environ., 72, 105−112, https://doi.org/10.1016/j.atmosenv.2013.02.024.
Tao, Y., X. N. Ye, S. Q. Jiang, X. Yang, J. M. Chen, Y. Y. Xie, and R. Y. Wang, 2016: Effects of amines on particle growth observed in new particle formation events. J. Geophys. Res. Atmos., 121, 324−335, https://doi.org/10.1002/2015JD024245.
Tong, D., J. Y. Chen, D. D. Qin, Y. M. Ji, G. Y. Li, and T. C. An, 2020: Mechanism of atmospheric organic amines reacted with ozone and implications for the formation of secondary organic aerosols. Science of the Total Environment, 737, 139830, https://doi.org/10.1016/j.scitotenv.2020.139830.
VandenBoer, T. C., M. Z. Markovic, A. Petroff, M. F. Czar, N. Borduas, and J. G. Murphy, 2012: Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection. Journal of Chromatography A, 1252, 74−83, https://doi.org/10.1016/j.chroma.2012.06.062.
Wang, G. H., K. Kawamura, S. C. Lee, K. Ho, and J. J. Cao, 2006: Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environ. Sci. Technol., 40, 4619−4625, https://doi.org/10.1021/es060291x.
Wang, G. H., K. Kawamura, M. J. Xie, S. Y. Hu, J. J. Cao, Z. S. An, J. G. Waston, and J. C. Chow, 2009: Organic molecular compositions and size distributions of Chinese summer and autumn aerosols from Nanjing: Characteristic haze event caused by wheat straw burning. Environ. Sci. Technol., 43, 6493−6499, https://doi.org/10.1021/es803086g.
Wang, G. H., and Coauthors, 2012: Molecular distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in size-resolved atmospheric particles from Xi’an City, China. Environ. Sci. Technol., 46, 4783−4791, https://doi.org/10.1021/es204322c.
Wang, G. H., and Coauthors, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113, 13 630−13 635, https://doi.org/10.1073/pnas.1616540113.
Wang, G. H., and Coauthors, 2018: Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts. Atmospheric Chemistry and Physics, 18, 10 123−10 132, https://doi.org/10.5194/acp-18-10123-2018.
Wang, L., V. Lal, A. F. Khalizov, and R. Y. Zhang, 2010: Heterogeneous chemistry of alkylamines with sulfuric acid: Implications for atmospheric formation of alkylaminium sulfates. Environ. Sci. Technol., 44, 2461−2465, https://doi.org/10.1021/es9036868.
Wang, X. P., G. H. Wang, Y. N. Xie, C. Wu, G. Y. Xue, Y. B. Chen, and Z. J. Ding, 2020: Chemical characterization and source apportionment of water-soluble inorganic ions of summertime atmospheric PM2.5 in Background of Yangtze River Delta Region. Research of Environmental Sciences, 33, 1366−1375, https://doi.org/10.13198∕j.issn.1001-6929.2019.12.08. (in Chinese with English abstract
Xie, H., L. M. Feng, Q. J. Hu, Y. J. Zhu, H. W. Gao, Y. Gao, and X. H. Yao, 2018: Concentration and size distribution of water-extracted dimethylaminium and trimethylaminium in atmospheric particles during nine campaigns - Implications for sources, phase states and formation pathways. Science of the Total Environment, 631−632, 130−141, https://doi.org/10.1016/j.scitotenv.2018.02.303.
Xie, Y., and Coauthors, 2020: Nitrate-dominated PM2.5 and elevation of particle pH observed in urban Beijing during the winter of 2017. Atmospheric Chemistry and Physics, 20, 5019−5033, https://doi.org/10.5194/acp-20-5019-2020.
Xue, G. Y., and Coauthors, 2020: Pollution characteristics and source apportionment of n-Alkanes and PAHs in Summertime PM2.5 at Background Site of Yangtze River Delta. Environmental Science, 41, 554−563, https://doi.org/10.13227/j.hjkx.201908019. (in Chinese with English abstract
You, Y., and Coauthors, 2014: Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS). Atmospheric Chemistry and Physics, 14, 12 181−12 194, https://doi.org/10.5194/acp-14-12181-2014.
Yu, L., and Coauthors, 2013: Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research, 13, 574−583, https://doi.org/10.4209/aaqr.2012.07.0192.
Yu, P. R., Q. J. Hu, K. Li, Y. J. Zhu, X. H. Liu, H. W. Gao, and X. H. Yao, 2016: Characteristics of dimethylaminium and trimethylaminium in atmospheric particles ranging from supermicron to nanometer sizes over eutrophic marginal seas of China and oligotrophic open oceans. Science of the Total Environment, 572, 813−824, https://doi.org/10.1016/j.scitotenv.2016.07.114.
Zahardis, J., S. Geddes, and G. A. Petrucci, 2008: The ozonolysis of primary aliphatic amines in fine particles. Atmospheric Chemistry and Physics, 8, 1181−1194, https://doi.org/10.5194/acp-8-1181-2008.
Zhang, Q., K. B. He, and H. Huo, 2012: Cleaning China's air. Nature, 484, 161−162, https://doi.org/10.1038/484161a.
Zhang, R., and Coauthors, 2013: Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmospheric Chemistry and Physics, 13, 7053−7074, https://doi.org/10.5194/acp-13-7053-2013.
Zhang, Y. X., J. J. Schauer, Y. H. Zhang, L. M. Zeng, Y. J. Wei, Y. Liu, and M. Shao, 2008: Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol., 42, 5068−5073, https://doi.org/10.1021/es7022576.
Zheng, J., and Coauthors, 2015: Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry. Atmos. Environ., 102, 249−259, https://doi.org/10.1016/j.atmosenv.2014.12.002.
Zhou, S. Q., H. W. Li, T. J. Yang, Y. Chen, C. R. Deng, Y. H. Gao, C. P. and Chen, J. Xu, 2019: Characteristics and sources of aerosol aminiums over the eastern coast of China: Insights from the integrated observations in a coastal city, adjacent island and surrounding marginal seas. Atmospheric Chemistry and Physics, 19, 10 447−10 467, https://doi.org/10.5194/acp-19-10447-2019.