Abarca S. F., M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation.J. Atmos. Sci.,70, 3216-3230, doi: 10.1175/JAS-D-12-0318.1.http://adsabs.harvard.edu/abs/2013JAtS...70.3216A
Bell M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005).J. Atmos. Sci.,69, 2414-2432, doi: 10.1175/JAS-D-11-0167.1.
Black M. L., H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert.Mon. Wea. Rev.,120, 947-957, doi: 10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO; 2.http://adsabs.harvard.edu/abs/1992MWRv..120..947B
Bryan G. H., R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations.Mon. Wea. Rev.,137, 1770-1789, doi: 10.1175/2008 MWR2709.1.
Chen Y. S., G. Brunet, and M. K. Yau, 2003: Spiral bands in a simulated hurricane.Part II: Wave activity diagnostics. J. Atmos. Sci.,60, 1239-1256, doi: 10.1175/1520-0469(2003)60 <1239:SBIASH>2.0.CO;2.http://adsabs.harvard.edu/abs/2003JAtS...60.1239C
Ge X. Y., 2015: Impacts of environmental humidity on concentric eyewall structure.Atmos. Sci. Letts.,16, 273-278, doi: 10.1002/asl2.553.http://onlinelibrary.wiley.com/doi/10.1002/asl2.553/pdf
Ge X. Y., L. Guan, and S. W. Zhou, 2016: Impacts of initial structure of tropical cyclone on secondary eyewall formation.Atmos. Sci. Lett.,17, 569-574, doi: 10.1002/asl.707.http://onlinelibrary.wiley.com/doi/10.1002/asl.707/pdf
Hack J. J., W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection.J. Atmos. Sci.,43, 1559-1573, doi: 10.1175/1520-0469 (1986)043<1559:NROAVT>2.0.CO;2.http://adsabs.harvard.edu/abs/1986JAtS...43.1559H
Hawkins J. D., M. Helveston, T. F. Lee, J. F. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade, 2006: Tropical cyclone multiple eyewall configurations. Preprints, 27th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Monterey,CA
Hendricks E. A., W. H. Schubert, Y. H. Chen, H. C. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model.J. Atmos. Sci.,71, 1623-1643, doi: 10.1175/JAS-D-13-0303.1.http://adsabs.harvard.edu/abs/2014JAtS...71.1623H
Houze R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science,315, 1235-1239, doi: 10.1126/science.1135650.http://www.ncbi.nlm.nih.gov/pubmed/17332404
Huang Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008).Part II: Axisymmetric dynamical processes. J. Atmos. Sci.,69, 662-674, doi: 10.1175/JAS-D-11-0114.1.http://adsabs.harvard.edu/abs/2012JAtS...69..662H
Jordan C. L., 1958: Mean soundings for the West Indies area.J. Atmos. Sci.,15, 91-97, doi: 10.1175/1520-0469(1958)015 <0091:MSFTWI>2.0.CO;2.http://adsabs.harvard.edu/abs/1958JAtS...15...91J
Judt F., S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005.J. Atmos. Sci.,67, 3581-3599, doi: 10.1175/2010JAS3471.1.http://adsabs.harvard.edu/abs/2013JAtS...70..989J
Kossin J. P., M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes.Mon. Wea. Rev.,137, 876-892, doi: 10.1175/2008MWR2701.1.http://adsabs.harvard.edu/abs/2009MWRv..137..876K
Kossin J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane's primary eyewall and a secondary ring of enhanced vorticity.J. Atmos. Sci.,57, 3893-3917, doi: 10.1175/1520-0469(2001)058<3893:UIBAHS> 2.0.CO;2.http://adsabs.harvard.edu/abs/2000JAtS...57.3893K
Kuo H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons.J. Atmos. Sci.,61, 2722-2734, doi: 10.1175/JAS3286.1.
Kuo H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation.Mon. Wea. Rev.,136, 5183-5198, doi: 10.1175/ 2008MWR2378.1.http://adsabs.harvard.edu/abs/2008MWRv..136.5183K
Molinari J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity.Part III: Potential vorticity structure. J. Atmos. Sci.,52, 3593-3606, doi: 10.1175/1520-0469(1995) 052<3593:EIOHIP>2.0.CO;2.
Montgomery M. T., R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes.Quart. J. Roy. Meteor. Soc.,123, 435-465, doi: 10.1002/qj.49712353810.http://onlinelibrary.wiley.com/doi/10.1002/qj.49712353810/full
Nong S. Y., K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes.Quart. J. Roy. Meteor. Soc.,129, 3323-3338, doi: 10.1256/qj.01.132.http://onlinelibrary.wiley.com/doi/10.1256/qj.01.132/full
Qiu X., Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation.J. Atmos. Sci.,70, 953-974, doi: 10.1175/ JAS-D-12-084.1.http://adsabs.harvard.edu/abs/2013JAtS...70..953Q
Qiu X., Z. M. Tan, and Q. N. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation.Mon. Wea. Rev.,138, 2092-2109, doi: 10.1175/2010 MWR3161.1.
Rozoff C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones.J. Atmos. Sci.,63, 325-340, doi: 10.1175/JAS3595.1.http://adsabs.harvard.edu/abs/2006JAtS...63..325R
Rozoff C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls.Quart. J. Roy. Meteor. Soc.,134, 583-593, doi: 10.1002/qj. 237.http://onlinelibrary.wiley.com/doi/10.1002/qj.237/pdf
Rozoff C. M., D. S. Nolan, J. P. Kossin, F. Q. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation.J. Atmos. Sci.,69, 2621-2643, doi: 10.1175/JAS-D-11-0326.1.http://adsabs.harvard.edu/abs/2012JAtS...69.2621R
Schubert W. H., J. J. Hack, 1982: Inertial stability and tropical cyclone development.J. Atmos. Sci.,39, 1687-1697, doi: 10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.http://adsabs.harvard.edu/abs/1982jats...39.1687s
Stovern D. R., E. A. Ritchie, 2016: Simulated sensitivity of tropical cyclone size and structure to the atmospheric temperature profile.J. Atmos. Sci.,71, 4553-4571, doi: 10.1175/ JAS-D-15-0186.1.http://www.researchgate.net/publication/307091539_Simulated_Sensitivity_of_Tropical_Cyclone_Size_and_Structure_to_the_Atmospheric_Temperature_Profile
Terwey W. D., M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113(D12),D12112, doi: 10.1029/2007JD 008897.http://onlinelibrary.wiley.com/doi/10.1029/2007JD008897/pdf
Willoughby H. E., 2009: Diabatically induced secondary flows in tropical cyclones.Part II: Periodic forcing. Mon. Wea. Rev.,137, 822-835, doi: 10.1175/2008MWR2658.1.http://adsabs.harvard.edu/abs/2009MWRv..137..822W
Willoughby H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls,secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411, doi: 10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.http://adsabs.harvard.edu/abs/1982jats...39..395w
Willoughby H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric,nonhydrostatic numerical model. J. Atmos. Sci., 41, 1169-1186, doi: 10.1175/1520-0469(1984)041 <1169:HSAEAS>2.0.CO;2.http://adsabs.harvard.edu/abs/1984JAtS...41.1169W
Yang Y. T., H. C. Kuo, E. A. Hendricks, and M. S. Peng, 2013: Structural and intensity changes of concentric eyewall typhoons in the western north pacific basin.Mon. Wea. Rev.,141, 2632-2648, doi: 10.1175/MWR-D-12-00251.1.http://adsabs.harvard.edu/abs/2013MWRv..141.2632Y
Zhang F. Q., D. D. Tao, Y. Q. Sun, and J. D. Kepert, 2017: Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones. Journal of Advances in Modeling Earth Systems, doi: 10.1002/2016MS000729.http://onlinelibrary.wiley.com/doi/10.1002/2016MS000729/full
Zhou X. Q., B. Wang, 2009: From concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model. Geophys. Res. Lett., 36,L03802, doi: 10.1029/ 2008GL036854.http://onlinelibrary.wiley.com/doi/10.1029/2008GL036854/pdf
Zhou X. Q., B. Wang, 2011: Mechanism of Concentric eyewall replacement cycles and associated intensity change.J. Atmos. Sci.,68, 972-988, doi: 10.1175/2011JAS3575.1.http://adsabs.harvard.edu/abs/2011JAtS...68..972Z
Zhou X. Q., B. Wang, 2013: Large-scale influences on secondary eyewall size.J. Geophys. Res.,118, 11 088-11 097, doi: 10.1002/jgrd.50605.http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50605/full
Zhu, P., Coauthors, 2015: Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system.Geophys. Res. Lett.,42, 10 027-10 036, doi: 10.1002/ 2015GL066436.http://onlinelibrary.wiley.com/doi/10.1002/2015GL066436/pdf
Zhu Z.-D., P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones, J. Geophys. Res., 119, 8049-8072, doi: 10.1002/2014JD021899.http://onlinelibrary.wiley.com/doi/10.1002/2014JD021899/abstract
Zhu Z. D., P. Zhu, 2015: Sensitivities of eyewall replacement cycle to model physics,vortex structure, and background winds in numerical simulations of tropical cyclones. J. Geophys. Res., 102, 590-622, doi: 10.1002/2014JD022056.http://adsabs.harvard.edu/abs/2015JGRD..120..590Z