Belcher S.,N. Wood, 1996: Form and wave drag due to stably stratified turbulent flow over low ridges. Quart. J. Roy. Meteor. Soc.,122, 863-902. https://doi.org/10.1002/qj49712253205
Beljaars A. C. M.,A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc.,130, 1327-1347. https://doi.org/10.1256/qj.0373
Bossuet C.,M. Déqué, and D. Cariolle, 1998: Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution. Annales Geophysicae,16: 238-249, https://doi.org/10.1007/s00585-998-0238-z.
Cheng W. Y. Y.,W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta Models over the western United States. Wea. Forecasting.,20, 812-821. https://doi.org/10.1175/WAF8851
Choi H. J.,S. Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res..,120, 12 445-12 457. https://doi.org/10.1002/2015JD024230.
Choi H. J.,S. J. Choi, M. S. Koo, J. E. Kim, Y. C. Kwon, and S. Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res..,122, 10 669-10 678. https://doi.org/10.1002/2017JD026696.
Fiedler F.,H. A. Panofsky, 1972: The geostrophic drag coefficient and the `effective' roughness length. Quart. J. Roy. Meteor. Soc.,98, 213-220. https://doi.org/10.1002/qj49709841519
Georgelin, M., Coauthors, 2000: The second COMPARE exercise: A model intercomparison using a case of a typical mesoscale orographic flow,the PYREX IOP3. Quart. J. Roy. Meteor. Soc., 126, 991-1029, https://doi.org/10.1002/qj.49712656410.
Gesch D. B.,M. J. Oimoen, S. K. Greenlee, C. A. Nelson, M. J. Steuck, and D. J. Tyler, 2002: The national elevation data set. Photogrammetric Engineering and Remote Sensing, 68( 1), 5- 11.
Gòmez-Navarro, J. J., C. C. Raible, S. Dierer, 2015: Sensitivity of the WRF model to PBL parameterisations and nesting techniques: Evaluation of wind storms over complex terrain. Geosci. Model Dev.,8, 3349-3363. https://doi.org/10.5194/ gmdd-8-5437-2015.
Hong S. Y.,Y. Noh and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev.,134, 2318-2341. https://doi.org/10.1175/MWR31991
Jiménez, P. A.,J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. Journal of Applied Meteorology and Climatology.,51, 300-316. https://doi.org/10.1175/JAMC-D-11-0841
Jiménez, P. A.,J. Dudhia, 2013: On the ability of the WRF model to reproduce the surface wind direction over complex terrain. Journal of Applied Meteorology and Climatology.,52, 1610-1617. https://doi.org/10.1175/JAMC-D-12-02661
Kim Y. J.,A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52: 1875-1902, https://doi.org/10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.
Kim Y. J.,S. D. Eckermann, and H. Y. Chun, 2003: An overview of the past,present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.-Ocean, 41, 65-98, https://doi.org/10.3137/ao.410105.
Lee J.,H. H. Shin, S. Y. Hong, P. A. Jiménez, J. Dudhia, and J. Hong, 2015: Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model. J. Geophys. Res.,120, 644-653. https://doi.org/10.1002/2014JD022747.
Lin L. X., 2006: Technical Guidance on Weather Forecasting in Guangdong Province. China Meteorological Press, Beijing, 236- 244. (in Chinese)
Lindzen R. S.,1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res.,86, 9707-9714. https://doi.org/10.1029/JC086iC10p09707.
Liu Y. B.,F. Chen, T. Warner, S. Werdlin, J. Bowers, and S. Halvorson, 2004: Improvements to surface flux computations in a non-local-mixing PBL scheme, and refinements to urban processes in the NOAH land-surface model with the NCAR/ATEC real-time FDDA and forecast system. Proc. 20th Conf. On Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 22. 2.
[ Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72489.htm.]
Lorente-Plazas R.,J. P. Montávez, P. A. Jimenez, S. Jerez, J. J. Gòmez-Navarro, J. A. García-Valero, and P. Jimenez-Guerrero, 2015: Characterization of surface winds over the Iberian Peninsula. International Journal of Climatology.,35, 1007-1026. https://doi.org/10.1002/joc4034
Lorente-Plazas R.,P. A. Jiménez, J. Dudhia, and J. P. Montávez, 2016: Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model. Mon. Wea. Rev.,144, 2085-2693. https://doi.org/10.1175/MWR-D-15-04491
Matsuno T.,1982: A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. J. Meteor. Soc. Japan.,60, 215-226. https://doi.org/10.2151/jmsj1965.60.1_215.
McLand ress, C., T. G. Shepherd, S. Polavarapu, S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60 the cause of the stratospheric zonal wind biases in chemistry-climate models? J. Atmos. Sci.,69, 802-818, https://doi.org/10.1175/JAS-D-11-0159.1.
Miller M. J.,T. N. Palmer, and R. Swinbank, 1989: Parametrization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys.,40, 84-109. https://doi.org/10.1007/BF01027469.
Milton S. F.,C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 124, 2023-2045. https://doi.org/10.1175/1520-0493(1996)124<2023:TIOPSS>2.0.CO;2.
Rontu L.,2006: A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus A: Dynamic Meteorology and Oceanography.,58, 69-81. https://doi.org/10.1111/j.1600-0870.2006.00162.x.
Sand u, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. G. Shepherd, A. Zadra, 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation. Journal of Advances in Modeling Earth Systems.,8, 196-211. https://doi.org/10.1002/2015MS000564.
Skamarock, W. C.,Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751-STR, 113 pp., https://doi.org/10.5065/D68S4MVH.
Song, I. S. and H. Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci.,62, 107-124. https://doi.org/10.1175/JAS-33631
Wilson J. D.,2002: Representing drag on unresolved terrain as a distributed momentum sink. J. Atmos. Sci., 59, 1629-1637. https://doi.org/10.1175/1520-0469(2002)059<1629:RDOUTA>2.0.CO;2.
Wood N.,A. R. Brown, and F. E. Hewer, 2001: Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths. Quart. J. Roy. Meteor. Soc.,127, 759-777. https://doi.org/10.1002/qj49712757303
Zhang D. L.,W. Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. Journal of Applied Meteorology, 43, 157-169. https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.
Zhong S. X.,Z. T. Chen, 2015: Improved wind and precipitation forecasts over south China using a modified orographic drag parameterization scheme. Journal of Meteorological Research.,29, 132-143. https://doi.org/10.1007/s13351-014-4934-1.
Zhong S. X.,Z. T. Chen, G. Wang, W. G. Meng, and R. Huang, 2016: Improved forecasting of cold air outbreaks over southern China through orographic gravity wave drag parameterization. Journal of Tropical Meteorology.,22, 522-534. https://doi.org/10.16555/j.1006-8775.201604007