Adler, R. F.,Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology 4, 1147-1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
Berckmans J.,T. Woollings, M.-E. Demory, P.-L. Vidale, and M. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state,orography and eddy forcing. Atmospheric Science Letters, 14, 34-40, https://doi.org/10.1002/asl2.412.
Chen, J. H, S. J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate 26, 380-398, https://doi.org/10.1175/JCLI-D-12-00061.1
Demory M.-E.,P. L. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle, Clim. Dyn., 42( 7-8), 2201- 2225.
Dong G. T.,H. Zhang, A. Moise, L. Hanson, P. Liang, and H. Ye, 2016: CMIP5 model-simulated onset,duration and intensity of the Asian summer monsoon in current and future climate. Climate Dyn., 46, 355-382, https://doi.org/10.1007/s00382-015-2588-z
Donlon C. J.,M. Martin, J. Stark, J. Roberts-Jones E. Fiedler, and W. Wimmer, 2012. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of Environment 116, 140-158, https://doi.org/10.1016/j.rse2010.10.017.
Endo H.,A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res. 117, D16118, https://doiorg/10.1029/2012JD017874.
Hack J. J.,J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution, [J]. Climate, 19( 11), 2267- 2289.
Higgins R. W.,W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American Monsoon System. J. Climate 14, 403-417, https://doi.org/10.1175/1520-0442(2001)014<0403:IOTPMO>2.0.CO;2
Huang D. Q.,J. Zhu, Y.-C. Zhang, and A.-N. Huang, 2013: Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models. J. Geophys. Res. 118, 9035-9047, https://doi.org/10.1002/jgrd.50695
Huffman G. J.,Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global,multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38-55, https://doi.org/10.1175/ JHM560.1
Hung C. W.,M. Yanai, 2004: Factors contributing to the onset of Australian summer monsoon. Quart. J. Roy. Meteor. Soc. 130, 739-758, https://doi.org/10.1256/qj.02.191
Johnson, S. J.,Coauthors, 2016: The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0. 35° AGCM. Climate Dyn.,46, 807-831, https://doi.org/10.1007/s00382-015-2614-1
Jolliffe I. T.,D. B. Stephenson, 2003: Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley,240 pp.
Kalnay, E., Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437- 472.
Kang I.-S.,2004: Current status of AGCM monsoon simulations.East Asian Monsoon,C.-P. Chang, Ed., World Scientific, 301-331, https://doi.org/10.1142/9789812701411_0008
Kitoh A.,S. Kusunoki, 2008: East Asian summer monsoon simulation by a 20-km mesh AGCM. Climate Dyn. 31, 389-401, https://doi.org/10.1007/s00382-007-0285-2
Krishnamurti T. N.,Y. Ramanathan, 1982: Sensitivity of the monsoon onset to differential heating. J. Atmos. Sci. 39, 1290-1306, https://doi.org/10.1175/1520-0469(1982)039<1290:SOTMOT>2.0.CO;2
Kusunoki S.,2016: Is the global atmospheric model MRI-AGCM3- 2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia? Climate Dyn.https://doi.org/10.1007/s00382-016-3335-9. (in Press)
Li J.,R. C. Yu, W. H. Yuan, H. M. Chen, W. Sun, and Y. Zhang.,2015: Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth Systems 7, 774-790, https://doiorg/10.1002/2014MS000414.
Li P. X.,T. J. Zhou, and X. L. Chen, 2017: Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets. Climate Dyn., https://doi.org/ 10.1007/s00382-017-3680-3. (in Press)
Liu Y. M.,J. C. L. Chan, J. Y. Mao, and G. X. Wu, 2002: The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev. 130, 2731-2744, https://doi.org/10.1175/1520-0493(2002)130<2731:TROBOB>2.0.CO;2
Mao J. Y.,G. X. Wu, 2007: Interannual variability in the onset of the summer monsoon over the eastern Bay of Bengal. Theor. Appl. Climatol. 89, 155-170, https://doi.org/10.1007/s00704-006-0265-1
Martin E. R.,C. Thorncroft, 2015: Representation of African easterly waves in CMIP5 models. J. Climate 28, 7702-7715, https://doi.org/10.1175/JCLI-D-15-0145.1
Mizielinski, M. S.,Coauthors, 2014: High resolution global climate modelling; the UPSCALE project, a large simulation campaign. Geoscientific Model Development, 7, 563-591, https://doi.org/10.5194/gmdd-7-563-2014.
Mizuta, R., Coauthors, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan,90A, 233-258, https://doi.org/10.2151/jmsj.2012- A12.
Ogata T.,S. J. Johnson, R. Schiemann, M. E. Demory, R. Mizuta, K. Yoshida, and O. Arakawa, 2017: The resolution sensitivity of the Asian summer monsoon and its inter-model comparison between MRI-AGCM and MetUM. Climate Dyn. 49, 3345-3361, https://doi.org/10.1007/s00382-016-3517-5
Raia A.,I. F. A. Cavalcanti, 2008: The life cycle of the South American monsoon system. J. Climate 21, 6227-6246, https://doi.org/10.1175/2008JCLI2249.1
Rayner N. A.,D. E. Parker, E. B. Horton, C. K. Folland , L. V. Alexand er, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature,sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Roberts, M. J.,Coauthors.2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models, [J]. Climate, 22( 10), 2541- 2556.
Saha S, Coauthors, 2010: The NCEP climate forecast system reanalysis.Bull. Amer. Meteor. Soc.,91 (8), 1015-1057, https//doi.org/10.1175/2010BAMS3001.1
Sperber K. R.,H. Annamalai, 2014: The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Climate Dyn. 43, 3219-3244, https://doi.org/10.1007/s00382-014-2099-3
Sperber K. R.,H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An inter comparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn. 41, 2711-2744, https://doi.org/10.1007/s00382-012-1607-6
Sultan B.,S. Janicot, 2003: The West African monsoon dynamics. Part II: The "Preonset" and "Onset" of the summer monsoon. J. Climate 16, 3407-3427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2
Taylor K. E.,R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485-498, https://doi:org/10.1175/BAMS-D-11-00094.1" target="_blank">org/10.1175/BAMS-D-11-00094.1">https://doi:org/10.1175/BAMS-D-11-00094.1
Trenberth K. E.,D. P. Stepaniak, and J. M. Caron. 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate 13, 3 969-3 993, https://doi.org/10.1175/1520-0442(2000)013<3969:TGMAST>2.0.CO;2
Wang B.,LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate 15, 386-398, https://doi.org/10.1175/1520-0442%282002%29015<0386%3ARSOTAP>2.0.CO%3B2
Wang B.,Q. H. Ding, 2008: Global monsoon: dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans 44, 165-183, https://doi.org/10.1016/j.dynatmoce.2007.05.002
Wu G. X.,Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev. 126, 913-927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2
Wu G. X.,Y. Guan, Y. M. Liu, J. H. Yan, and J. Y. Mao, 2012: Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Climate Dyn. 38, 261-279, https://doi.org/10.1007/s00382-010-0978-9
Xu J. J.,J. C. L. Chan, 2001: First transition of the Asian summer monsoon in 1998 and the effect of the Tibet- tropical Indian ocean thermal contrast. J. Meteor. Soc. Japan 79, 241-253, https://doi.org/10.2151/jmsj.79.241
Yao J. C.,T. J. Zhou, Z. Guo, X. L. Chen, L. W. Zou, and Y. Sun, 2017: Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate 30, 8825-8840, https://doi.org/10.1175/JCLI-D-16-0372.1
Yu B.,J. M. Wallace, 2000: The principal mode of interannual variability of the North American Monsoon System. J. Climate 13, 2794-2800, https://doi.org/10.1175/1520-0442(2000)013<2794:TPMOIV>2.0.CO;2
Zhang L. X., P. L. Wu, T. J. Zhou, M. J. Roberts, R. Schiemann, 2016: Added value of high resolution models in simulating global precipitation characteristics. Atmospheric Science Letters 17, 646-657, https://doi.org/10.1002/asl.715
Zhao M.,I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology,interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653-6678, https://doi.org/10.1175/2009JCLI3049.1.
Zhou T.,D. Y. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon——Recent progress and state of affairs.Meteorologische Zeitschrift,18 (4), 455-467, https://doi.org/10.1127/0941-2948/2009/0396
Zhou, T. J.,Coauthors, 2017: A robustness analysis of CMIP5 models over the East Asia-Western North Pacific Domain. Engineering 3, 773-778, https://doi.org/10.1016/[J].ENG.2017.05.018
Zou L. W.,T. J. Zhou, 2015: Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models. Adv. Atmos. Sci. 32, 794-806, https://doi.org/10.1007/s00376-014-4053-z