Ackermann I. J.,H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ.,32, 2981-2999. http://dx.doi.org/10.1016/S1352-2310(98)00006-5
Alexe, M., Coauthors, 2015: Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmos. Chem. Phys.,15, 113-133. http://dx.doi.org/10.5194/acp-15-113-2015
Anadranistakis M.,K. Lagouvardos, V. Kotroni, and H. Elefteriadis, 2004: Correcting temperature and humidity forecasts using Kalman filtering: Potential for agricultural protection in Northern Greece. Atmos. Res.,71, 115-125. http://dx.doi.org/10.1016/j.atmosres.2004.03.007
Barbu A. L.,A. J. Segers, M. Schaap, A. W. Heemink, and P. J. H. Builtjes, 2009: A multi-component data assimilation experiment directed to sulphur dioxide and sulphate over Europe. Atmos. Environ.,43, 1622-1631. http://dx.doi.org/10.1016/j.atmosenv.2008.12.005
Barret, B., Coauthors, 2008: Transport pathways of CO in the African upper troposphere during the monsoon season: A study based upon the assimilation of spaceborne observations. Atmos. Chem. Phys.,8, 3231-3246. http://dx.doi.org/10.5194/acp-8-3231-2008
Benedetti, A., Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res.,114, D13205. http://dx.doi.org/10.1029/2008JD011115
Bocquet, M., Coauthors, 2015: Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys.,15, 5325-5358. http://dx.doi.org/10.5194/acp-15-5325-2015
Denby B.,M. Schaap, A. Segers, P. Builtjes, and J. Horálek, 2008: Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale. Atmos. Environ.,42, 7122-7134. http://dx.doi.org/10.1016/j.atmosenv.2008.05.058
Dubovik O.,T. Lapyonok, Y. J. Kaufman, M. Chin, P. Ginoux, R. A. Kahn, and A. Sinyuk, 2008: Retrieving global aerosol sources from satellites using inverse modeling. Atmos. Chem. Phys.,8, 209-250. http://dx.doi.org/10.5194/acp-8-209-2008
Elbern H.,A. Strunk, H. Schmidt, and O. Talagrand, 2007: Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys.,7, 3749-3769. http://dx.doi.org/10.5194/acp-7-3749-2007
Galanis G.,M. Anadranistakis, 2002: A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorological Applications,9, 437-441. http://dx.doi.org/10.1017/S1350482702004061
Geer, A. J.,Coauthors, 2006: The ASSET intercomparison of ozone analyses: Method and first results. Atmos. Chem. Phys.,6, 5445-5474. http://dx.doi.org/10.5194/acp-6-5445-2006
Glahn H. R.,D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor.,11, 1203-1211. http://dx.doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
Grell G. A.,S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled "online" chemistry within the WRF model. Atmos. Environ.,39, 6957-6975. http://dx.doi.org/10.1016/j.atmosenv.2005.04.027
Henze D. K.,J. H. Seinfeld, and D. T. Shindell, 2009: Inverse modeling and mapping US air quality influences of inorganic PM2. 5 precursor emissions using the adjoint of GEOS-Chem. Atmos. Chem. Phys.,9, 5877-5903. http://dx.doi.org/10.5194/acp-9-5877-2009
Honore, C., Coauthors, 2008: Predictability of European air quality: Assessment of 3 years of operational forecasts and analyses by the PREV'AIR system. J. Geophys. Res.,113. http://dx.doi.org/10.1029/2007JD008761
Inness, A., Coauthors, 2015: Data assimilation of satellite-retrieved ozone,carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS. Atmos. Chem. Phys.,15, 5275-5303. http://dx.doi.org/10.5194/acp-15-5275-2015
Jiang Z. Q.,Z. Q. Liu, T. J. Wang, C. S. Schwartz, H. C. Lin, and F. Jiang, 2013: Probing into the impact of 3DVAR assimilation of surface PM10 observations over China using process analysis. J. Geophys. Res.,118, 6738-6749. http://dx.doi.org/10.1002/jgrd.50495
Kalman R. E.,1960: A new approach to linear filtering and prediction problems. Journal of Basic Engineering,82, 35-45. http://dx.doi.org/10.1115/1.3662552
Li Z.,Z. Zang, Q. B. Li, Y. Chao, D. Chen, Z. Ye, Y. Liu, and K. N. Liou, 2013: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2. 5 prediction. Atmos. Chem. Phys.,13, 4265-4278. http://dx.doi.org/10.5194/acp-13-4265-2013
Libonati R.,I. Trigo, and C. C. Dacamara, 2008: Correction of 2m-temperature forecasts using Kalman Filtering technique. Atmos. Res.,87, 183-197. http://dx.doi.org/10.1016/j.atmosres.2007.08.006
Liu Z. Q.,Q. H. Liu, H. C. Lin, C. S. Schwartz, Y. H. Lee, and T. J. Wang, 2011: Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia. J. Geophys. Res.,116, D23206. http://dx.doi.org/10.1029/2011JD016159
Makar, P. A.,Coauthors, 2015: Feedbacks between air pollution and weather,Part 1: Effects on weather. Atmos. Environ.,115, 442-469. http://dx.doi.org/10.1016/j.atmosenv.2014.12.003
Mizzi A. P.,A. F. Arellano Jr., D. P. Edwards, J. L. Anderson, and G. G. Pfister, 2016: Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: A regional chemical transport/ensemble Kalman filter data assimilation system. Geoscientific Model Development,9, 965-978. http://dx.doi.org/10.5194/gmd-9-965-2016
Parrish D. F.,J. C. Derber, 1992: The National Meteorological Center's spectral statistical-interpolation analysis system.Mon. Wea. Rev.,120, 1747-1763. https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
Saide P. E.,G. R. Carmichael, S. N. Spak, P. Minnis, and J. K. Ayers, 2012: Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number. Proceedings of the National Academy of Sciences of the United States of America,109, 11 939-11 943. http://dx.doi.org/10.1073/pnas.1205877109
Saide, P. E.,Coauthors, 2015: Central American biomass burning smoke can increase tornado severity in the U. S. Geophys. Res. Lett.,42, 956-965. http://dx.doi.org/10.1002/2014GL062826
Schell B.,I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res.,106, 28275-28293. http://dx.doi.org/10.1029/2001JD000384
Schmidt H.,D. Martin, 2003: Adjoint sensitivity of episodic ozone in the Paris area to emissions on the continental scale. J. Geophys. Res.,108, 8561. http://dx.doi.org/10.1029/2001JD001583
Schwartz C. S.,Z. Q. Liu, H. C. Lin, and S. A. McKeen, 2012: Simultaneous three-dimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth. J. Geophys. Res.,117, D13202. http://dx.doi.org/10.1029/2011JD017383
Semane, N., Coauthors, 2009: On the extraction of wind information from the assimilation of ozone profiles in Météo-France 4-D-Var operational NWP suite. Atmos. Chem. Phys.,9, 4855-4867. http://dx.doi.org/10.5194/acp-9-4855-2009
Stockwell W. R.,P. Middleton, J. S. Chang, and X. Y. Tang, 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res.,95, 16343-16367. http://onlinelibrary.wiley.com/doi/10.1029/JD095iD10p16343/full
Struzewska J.,J. W. Kaminski, and M. Jefimow, 2016: Application of model output statistics to the GEM-AQ high resolution air quality forecast. Atmos. Res.,181, 186-199. http://dx.doi.org/10.1016/j.atmosres.2016.06.012
Tang X.,J. Zhu, Z. F. Wang, and A. Gbaguidi, 2011: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions. Atmos. Chem. Phys.,11, 12 901-12 916. http://dx.doi.org/10.5194/acp-11-12901-2011
Tang X.,J. Zhu, Z. F. Wang, A. Gbaguidi, C. Y. Lin, J. Y. Xin, T. Song, and B. Hu, 2016: Limitations of ozone data assimilation with adjustment of NOx emissions: Mixed effects on NO2 forecasts over Beijing and surrounding areas. Atmos. Chem. Phys.,16, 6395-6405. http://dx.doi.org/10.5194/acp-16-6395-2016
Taylor A. A.,L. M. Leslie, 2005: A single-station approach to model output statistics temperature forecast error assessment. Wea. Forecasting,20, 1006-1020. http://dx.doi.org/10.1175/WAF893.1
van Loon, M., Coauthors, 2007: Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ.,41, 2083-2097. http://dx.doi.org/10.1016/j.atmosenv.2006.10.073
Wang Y.,K. N. Sartelet, M. Bocquet, and P. Chazette, 2014: Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign. Atmos. Chem. Phys.,14, 3511-3532. http://dx.doi.org/10.5194/acp-14-3511-2014
Wargan K.,S. Pawson, M. A. Olsen, J. C. Witte, A. R. Douglass, J. R. Ziemke, S. E. Strahan, and J. E. Nielsen, 2015: The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data. J. Geophys. Res.,120, 2013-2036. http://dx.doi.org/10.1002/2014JD022493
Wilson L. J.,M. Vallée, 2003: The Canadian Updateable Model Output Statistics (UMOS) system: Validation against perfect prog. Wea. Forecasting,18, 288-302. http://dx.doi.org/10.1175/1520-0434(2003)018<0288:TCUMOS>2.0.CO;2
Yerramilli, A., Coauthors, 2010: Simulation of surface ozone pollution in the central gulf coast region using WRF/Chem model: Sensitivity to PBL and land surface physics. Advances in Meteorology,2010, Article ID 319138. http://dx.doi.org/10.1155/2010/319138
Yin X. M.,T. Dai, N. A. J. Schutgens, D. Goto, T. Nakajima, and G. Y. Shi, 2016: Effects of data assimilation on the global aerosol key optical properties simulations. Atmos. Res.,178-179, 175-186. https://doi.org/10.1016/j.atmosres.2016.03.016
Yumimoto, K., Coauthors, 2016: Aerosol data assimilation using data from Himawari-8,a next-generation geostationary meteorological satellite. Geophys. Res. Lett.,43, 5886-5894. http://dx.doi.org/10.1002/2016GL069298
Zhang, L., Coauthors, 2015: Source attribution of particulate matter pollution over North China with the adjoint method. Environmental Research Letters,10, 084011. https://doi.org/10.1088/1748-9326/10/8/084011
Zhang, L., Coauthors, 2016: Sources and processes affecting fine particulate matter pollution over North China: An adjoint analysis of the Beijing APEC Period. Environ. Sci. Technol.,50, 8731-8740. http://dx.doi.org/10.1021/acs.est.6b03010