Bender M. A.,R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones.Mon. Wea. Rev.,115,130-155, https://doi.org/10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2
Chang S. W.-J.,1982: The orographic effects induced by an island mountain range on propagating tropical cyclones.Mon. Wea. Rev.,110,1255-1270, https://doi.org/10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2
Chien F.-C.,H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, https://doi.org/10.1029/2010JD015092
Dudhia J.,1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
Ge X.,T. Li, S. Zhang, and M. S. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 46-50, https://doi.org/10.1002/asl.255
Hall J.,M. Xue, L. Leslie, K. Zhao, L. K. Ran, and F. Y. Kong, 2010: Intensity,structure and rainfall in high-resolution numerical simulations of Typhoon Morakot (2009). Proceedings of the 29th Conference on Hurricanes Tropical Meteorology, Tucson, AZ, American Meteor Society.
Hong C.-C.,M.-Y. Lee, H.-H. Hsu, and J.-L. Kuo, 2010: Role of submonthly disturbance and 40-50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in Southern Taiwan. Geophys. Res. Lett., 37, L08805, https://doi.org/10.1029/2010GL042761
Hong S.-Y.,J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120,https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Hong S.-Y.,Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, https://doi.org/10.1175/MWR3199.1
Huang C.-Y.,Y.-L. Lin, 2008: The Influence of mesoscale mountains on vortex tracks: Shallow-water modeling study. Meteor. Atmos. Phys., 101, 1-20, https://doi.org/10.1007/s00703-007-0284-1
Huang Y.-H.,C.-C. Wu, and Y. Q. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708-1727, https://doi.org/10.1175/2011MWR3560.1
Hunt J. C. R.,W. H. Snyder, 1980: Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671-704, https://doi.org/10.1017/S0022112080002303
Jian G.-J.,C.-S. Lee, and G. T.-J. Chen, 2006: Numerical simulation of Typhoon Dot (1990) during TCM-90: Typhoon Dot's discontinuous track across Taiwan.Terrestrial, Atmospheric and Oceanic Sciences,17,23-52, https://doi.org/10.3319/TAO.2006.17.1.23(SWS)
Kain J. S.,2004: The Kain-Fritsch convective parameterization: An update.J. Appl. Meteor.,43,170-181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Lee C.-S.,Y.-C. Liu, and F.-C. Chien, 2008: The secondary low and heavy rainfall associated with Typhoon Mindulle (2004). Mon. Wea. Rev., 136, 1260-1283, https://doi.org/10.1175/2007MWR2069.1
Lee C.-S.,C.-C. Wu, T.-C. C. Wang, and R. L. Elsberry, 2011: Advances in understanding the "perfect monsoon-influenced typhoon": Summary from international conference on typhoon Morakot (2009). Asia-Pacific Journal of Atmospheric Sciences, 47, 213-222, https://doi.org/10.1007/s13143-011-0010-2
Liang J.,L. G. Wu, X. Y. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 2222-2235, https://doi.org/10.1175/2011JAS3731.1
Lin I. -I.,M. -D. Chou, and C. -C. Wu, 2011: The impact of a warm ocean eddy on Typhoon Morakot (2009): A preliminary study from satellite observations and numerical modelling.Terr. Atmos. Oceanic Sci.,22,661-671, https://doi.org/10.3319/TAO.2011.08.19.01(TM)
Lin P.-H.,M.-J. Yang, 2012: The potential vorticity budget of typhoon Nari (2001). Chinese Journal of Atmospheric Sciences, 40, 1- 27. (in Chinese)
Lin Y.-L.,N. C. Witcraft, and Y.-H. Kuo, 2006: Dynamics of track deflection associated with the passage of tropical cyclones over a mesoscale mountain. Mon. Wea. Rev., 134, 3509-3538, https://doi.org/10.1175/MWR3263.1
Lin Y.-L.,J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone.J. Atmos. Sci.,56,534-562, https://doi.org/10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2
Lin Y.-L.,D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone.Mon. Wea. Rev.,130,2929-2950, https://doi.org/10.1175/1520-0493(2002)130<2929:OIORAT>2.0.CO;2
Lin Y.-L.,S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849-1866, https://doi.org/10.1175/JAS3439.1
Ma L.-M.,Z.-M. Tan, 2010: Tropical cyclone initialization with dynamical retrieval from a modified UWPBL Model. J. Meteor. Soc. Japan, 88, 827-846, https://doi.org/10.2151/jmsj.2010-504
Mlawer E. J.,S. A. Clough, 1997: On the extension of RRTM to the shortwave region. Proceedings of the Sixth Atmospheric Measurement (ARM) Science Team Meeting, CONF-9603149., U.S. Department of Energy, Washington, D.C, 223- 226.
Noh Y.,W.-G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401-427, https://doi.org/10.1023/A:1022146015946
Peng. L., S.-T. Wang, S.-L. Shieh, M.-D. Cheng, T.-C. Yeh, 2011: Surface track discontinuity of tropical cyclones crossing Taiwan: A statistical study. Mon. Wea. Rev., 140, 121-139, https://doi.org/10.1175/MWR-D-10-05050.1
Reasor P. D.,M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency.J. Atmos. Sci.,61,3-22, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2
Schä r, C., D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography.J. Atmos. Sci.,54,534-554, https://doi.org/10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2
Skamarock W. C.,J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7), 3465-3485, https://doi.org/10.1016/j.jcp.2007.01.037
Smith R. B.,1989: Hydrostatic airflow over mountains. Adv. Geophys., 31, 1-41, https://doi.org/10.1016/S0065-2687(08)60052-7
Smolarkiewicz P. K.,R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles.Part I: Baroclinically generated lee vortices. J. Atmos. Sci.,46,1154-1164, https://doi.org/10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2
Stohl A.,C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical Note: The Lagrangian particle dispersion model FLEXPART version 6. 2. Atmos. Chem. Phys., 5, 2461-2474, https://doi.org/10.5194/acp-5-2461-2005
Tang X.-D.,M.-J. Yang, and Z.-M. Tan, 2012: A modeling study of orographic convection and mountain waves in the landfalling typhoon Nari (2001). Quart. J. Roy. Meteor. Soc., 138, 419-438, https://doi.org/10.1002/qj.933
Van Sang, N., R. K. Smith, M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563-582, https://doi.org/10.1002/qj.235
Van Nguyen, H., Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491, https://doi.org/10.1175/2011MWR3505.1
Wang C.-C.,H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172-3196, https://doi.org/10.1175/JAS-D-11-0346.1
Wang S.-T.,1980: Prediction of the behavior and intensity of typhoons in Taiwan and its vicinity. Research Rep. 018, Taipei, Taiwan, 100 pp. (in Chinese)
Wang S.-T.,1989: Track, intensity, structure, wind and precipitation characteristics of typhoons affecting Taiwan. Disaster Mitigation Research Rep. 80-73, Taipei, Taiwan, 285 pp. (in Chinese)
Wang Y. Q.,G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear.J. Atmos. Sci.,53,3313-3332, https://doi.org/10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2
Wu C.-C.,2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model.Mon. Wea. Rev.,129,1533-1549, https://doi.org/10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2
Wu C.-C.,Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges.Bull. Amer. Meteor. Soc.,80,67-80, https://doi.org/10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2
Wu L. G.,J. Liang, and C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208-2221, https://doi.org/10.1175/2011JAS3730.1
Yang M.-J.,D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 3095-3115, https://doi.org/10.1175/2008JAS2453.1
Yeh T.-C.,R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography.Part I: Upstream track deflections. Mon. Wea. Rev.,121,3193-3212, https://doi.org/10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2
Yeh T.-C.,R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan orography.Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev.,121,3213-3233, https://doi.org/10.1175/1520-0493(1993)121<3213:IOTWTT>2.0.CO;2
Zehnder J. A.,M. J. Reeder, 1997: A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre. Meteor. Atmos. Phys., 64, 1-19, https://doi.org/10.1007/BF01044127