Anderson B. T.,2012: Intensification of seasonal extremes given a 2C global warming target. Climatic Change,112, 325-337. https://doi.org/10.1007/s10584-011-0213-7
Andrews T.,P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation,radiative forcing and global temperature change. Geophys. Res. Lett.,37, L14701. https://doi.org/10.1029/2010gl043991
Betts R. A.,M. Collins, D. L. Hemming, C. D. Jones, J. A. Lowe, and M. G. Sanderson, 2011: When could global warming reach 4\(\circ\)C? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 67-84. https://doi.org/10.1098/rsta.2010.0292
Bintanja R.,F. M. Selten, 2014: Future increases in arctic precipitation linked to local evaporation and sea-ice retreat. Nature,509, 479-482. https://doi.org/10.1038/nature13259
Collins M.,C. A. Senior, 2002: Projections of future climate change. Weather,57, 283-287. https://doi.org/10.1256/004316502320517371
Deser C.,A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn.,38, 527-546. https://doi.org/10.1007/s00382-010-0977-x
Doblas-Reyes, F. J.,Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quart. J. Roy. Meteor. Soc.,135, 1538-1559. https://doi.org/10.1002/qj.464
Friedlingstein, P., Coauthors, 2014: Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci.,7, 709-715. https://doi.org/10.1038/ngeo2248
Fung F.,A. Lopez, and M. New, 2011: Water availability in +2\(\circ\)C and +4\(\circ\)C worlds. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369,99-116. https://doi.org/10.1098/rsta.2010.0293
Giorgi F.,X. Q. Bi, 2009: Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys. Res. Lett.,36, L06709. https://doi.org/10.1029/2009gl037593
Graversen R. G.,M. H. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn.,33, 629-643. https://doi.org/10.1007/s00382-009-0535-6
Gupta A. S.,N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate,26, 8597-8615. https://doi.org/10.1175/JCLI-D-12-00521.1
Hallegatte, S., Coauthors, 2015: Shock Waves: Managing the Impacts of Climate Change on Poverty. World Bank, Washington, DC, 227 pp.
Hawkins E.,R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn.,37, 407-418. https://doi.org/10.1007/s00382-010-0810-6
Hawkins E.,R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett.,39, L01702. https://doi.org/10.1029/2011GL050087
Holland, M. M.,C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn.,21, 221-232. https://doi.org/10.1007/s00382-003-0332-6
Hu Z. Z.,A. Kumar, B. Jha, and B. H. Huang, 2012: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate,25, 2356-2373. https://doi.org/10.1175/JCLI-D-11-00323.1
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,T. F. Stocker et al., Eds., Cambridge University Press, 1029- 1136.
James R.,R. Washington, 2013: Changes in African temperature and precipitation associated with degrees of global warming. Climatic Change,117, 859-872. https://doi.org/10.1007/s10584-012-0581-7
Jiang D. B.,Y. Sui, and X. Lang, 2016: Timing and associated climate change of a 2\(\circ\)C global warming. Int. J. Climatol.,36, 4512-4522. https://doi.org/10.1002/joc.4647
Joshi M.,E. Hawkins, R. Sutton, J. Lowe, and D. Frame, 2011: Projections of when temperature change will exceed 2\(\circ\)C above pre-industrial levels. Nat. Clim. Change,1, 407-412. https://doi.org/10.1038/nclimate1261
Kaplan J. O.,M. New, 2006: Arctic climate change with a 2\(\circ\)C global warming: timing,climate patterns and vegetation change. Climatic Change,79, 213-241. https://doi.org/10.1007/s10584-006-9113-7
King A. D.,D. J. Karoly, 2017: Climate extremes in Europe at 1. 5 and 2 degrees of global warming. Environ. Res. Lett.,12, 114031. https://doi.org/10.1088/1748-9326/aa8e2c
King A. D.,D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1. 5 and 2 degrees of global warming. Nat. Clim. Change,7, 412-416. https://doi.org/10.1038/nclimate3296
Knutti R.,R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate,23, 2739-2758. https://doi.org/10.1175/2009JCLI3361.1
Liu J. P.,J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America,109, 4074-4079. https://doi.org/10.1073/pnas.1114910109
Lu J. H.,M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett.,36, L16704. https://doi.org/10.1029/2009GL040133
Macilwain C.,2014: A touch of the random. Science,344, 1221-1223. https://doi.org/10.1126/science.344.6189.1221
Mahlstein I.,R. Knutti, S. Solomon, and R. W. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett.,6, 034009. https://doi.org/10.1088/1748-9326/6/3/034009
May W.,2012: Assessing the strength of regional changes in near-surface climate associated with a global warming of 2\(\circ\)C. Climatic Change,110, 619-644. https://doi.org/10.1007/s10584-011-0381-5
Rand alls, S., 2010: History of the 2\(\circ\)C climate target. WIREs Climate Change,1, 598-605. https://doi.org/10.1002/wcc.62
Riahi, K., Coauthors, 2011: RCP 8. 5——A scenario of comparatively high greenhouse gas emissions. Climatic Change,109, 33-57. https://doi.org/10.1007/s10584-011-0149-y
Rinke A.,P. Marbaix, and K. Dethloff, 2004: Internal variability in Arctic regional climate simulations: case study for the SHEBA year. Climate Research,27, 197-209. https://doi.org/10.3354/cr027197
Rogelj, J., Coauthors, 2011: Emission pathways consistent with a 2\(\circ\)C global temperature limit. Nat. Clim. Change,1, 413-418. https://doi.org/10.1038/nclimate1258
Rogelj J.,G. Luderer, R. C. Pietzcker, E. Kriegler, M. Schaeffer, V. Krey, and K. Riahi, 2015: Energy system transformations for limiting end-of-century warming to below 1.5\(\circ\)C. Nat. Clim. Change,5, 519-527. https://doi.org/10.1038/nclimate2572
Schleussner, C. F.,Coauthors, 2016a: Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change,6, 827-835. https://doi.org/10.1038/nclimate3096
Schleussner, C. F.,Coauthors, 2016b: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5\(\circ\)C and 2\(\circ\)C. Earth System Dynamics,7, 327-351. https://doi.org/10.5194/esd-7-327-2016
Sejas S. A.,O. S. Albert, M. Cai, and Y. Deng, 2014: Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4. Environ. Res. Lett.,9, 124005. https://doi.org/10.1088/1748-9326/9/12/124005
Steinacher M.,F. Joos, and T. F. Stocker, 2013: Allowable carbon emissions lowered by multiple climate targets. Nature,499, 197-201. https://doi.org/10.1038/nature12269
Sui Y.,X. M. Lang, and D. B. Jiang, 2015: Temperature and precipitation signals over China with a 2\(\circ\)C global warming. Climate Research,64, 227-242. https://doi.org/10.3354/cr01328
Sutton R. T.,B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett.,34, L02701. https://doi.org/10.1029/2006gl028164
Taylor K. E.,R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bul. Amer. Meteor. Soc.,93, 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
Vautard, R., Coauthors, 2014: The European climate under a 2\(\circ\)C global warming. Environ. Res. Lett.,9, 034006. https://doi.org/10.1088/1748-9326/9/3/034006
Wang L.,J. B. Huang, Y. Luo, Y. Yao, and Z. C. Zhao, 2015: Changes in extremely hot summers over the global land area under various warming targets. PLoS One,10, e0130660. https://doi.org/10.1371/journal.pone.0130660
Wang Z. L.,L. Lin, X. Y. Zhang, H. Zhang, L. K. Liu, and Y. Y. Xu, 2017: Scenario dependence of future changes in climate etremes under 1. 5\(\circ\)C and 2\(\circ\)C global warming. Sci. Rep.,7, 46432. https://doi.org/10.1038/srep46432
Winton M.,2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett.,33, L03701. https://doi.org/10.1029/2005gl025244
Woldemeskel F. M.,A. Sharma, B. Sivakumar, and R. Mehrotra, 2015: Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J. Geophys. Res. Atmos.,121, 3-17. https://doi.org/10.1002/2015JD023719
World Bank, 2012: Turn down the heat: Why a 4\(\circ\)C warmer world must be avoided. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC.
World Bank, 2013: Turn down the heat: Climate extremes, regional impacts, and the case for resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC.
Zhang L.,Y. H. Ding, T. W. Wu, X. G. Xin, Y. W. Zhang, and Y. Xu, 2013: The 21st century annual mean surface air temperature change and the 2\(\circ\)C warming threshold over the globe and China as projected by the CMIP5 models. Acta Meteorologica Sinica,71, 1047-1060. https://doi.org/10.11676/qxxb2013.087(in Chinese with English abstract)
Zelazowski P.,Y. Malhi, C. Huntingford, S. Sitch, and J. B. Fisher, 2011: Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369,137-160. https://doi.org/10.1098/rsta.2010.0238