Bister M.,2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 3463-3476, https://doi.org/10.1175/1520-0469(2001)058<3463:EOPCOT>2.0.CO;2
Bister M.,K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 2662-2682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2
Braun S. A.,2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 2007-2037, https://doi.org/10.1175/2009MWR3135.1
Braun S. A.,M. T. Montgomery, K. J. Mallen, and P. D. Reasor, 2010: Simulation and interpretation of the genesis of tropical storm Gert (2005) as part of the NASA tropical cloud systems and processes experiment. J. Atmos. Sci., 67, 999-1025, https://doi.org/10.1175/2009JAS3140.1
Braun S. A.,J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236-257, https://doi.org/10.1175/JAS-D-10-05007.1
Davis C. A.,T. J. Galarneau Jr, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686-704, https://doi.org/10.1175/2008JAS2819.1
Davis C. A.,D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 1284-1305, https://doi.org/10.1175/JAS-D-11-0225.1
Dunion J. P.,C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353-366, https://doi.org/10.1175/BAMS-85-3-353
Dunkerton T. J.,M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmospheric Chemistry and Physics, 9, 5587-5646, https://doi.org/10.5194/acp-9-5587-2009
Emanuel K. A.,1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431-3456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2
Emanuel K.,R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347-368, https://doi.org/10.1175/BAMS-89-3-347
Emanuel K.,C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843-858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
Freismuth T. M.,B. Rutherford, M. A. Boothe, and M. T. Montgomery, 2016: Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment? Atmospheric Chemistry and Physics, 16, 8511-8519, https://doi.org/10.5194/acp-16-8511-2016
Fritz C.,Z. Wang, 2013: A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci., 70, 91-111, https://doi.org/10.1175/JAS-D-12-018.1
Fritz C.,Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 4321-4332, https://doi.org/10.1175/JAS-D-13-0378.1
Fritz C.,Z. Wang, S. W. Nesbitt, and T. J. Dunkerton, 2016: Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. Geophys. Res. Lett., 43, 894-901, https://doi.org/10.1002/2015GL067122
Ge X. Y.,T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859-3875, https://doi.org/10.1175/JAS-D-13-066.1
Gray W. M.,1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
Gray W. M.,1977: Tropical cyclone genesis in the Western North Pacific.. J. Meteor. Soc Japan, 55, 465- 482.10.2151/jmsj1965.55.5_465https://www.jstage.jst.go.jp/article/jmsj1965/55/5/55_5_465/_article
Gray W. M.,1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., James Glaisher House, 155- 218.9921eca363aa4331ce74bee158f1c4d2http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F10018320356http://ci.nii.ac.jp/naid/10018320356Roland DA Sr, Sloan DR, Harms RH.
Hendricks E. A.,M. T. Montgomery, and C. A. Davis, 2004: The role of "vortical" hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 1209-1232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
Hong S. Y.,Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, https://doi.org/10.1175/MWR3199.1
James R. P.,P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140-161, https://doi.org/10.1175/2009MWR3018.1
Kain J. S.,2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Kilroy G.,R. K. Smith, 2013: A numerical study of rotating convection during tropical cyclogenesis. Q. J. R. Meteorol. Soc., 139, 1255-1269, https://doi.org/10.1002/qj.2022
Kim H. S.,J. H. Kim, C. H. Ho, and P. S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488-508, https://doi.org/10.1175/2010JCLI3751.1
Komaromi W. A.,2013: An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci., 70: 542-558, https://doi.org/10.1175/JAS-D-12-052.1
Lau K.-H.,Z.-F. Zhang, H.-Y. Lam, and S.-Y. Chen, 2003: Numerical simulation of a South China Sea typhoon Leo (1999). Meteor. Atmos. Phys.,83: 147-161, https://doi.org/10.1007/s00703-002-0559-5
Montgomery M. T.,M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355-386, https://doi.org/10.1175/JAS3604.1
Nolan D. S.,2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241- 266.10.1016/j.atmosres.2007.07.005ff1b61efe64c21f204df446c37abafc3http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F242434964_What_is_the_trigger_for_tropical_cyclogenesis%3Fev%3Dauth_pubhttp://www.researchgate.net/publication/242434964_What_is_the_trigger_for_tropical_cyclogenesis?ev=auth_pubAbstract The development of a tropical cyclone from a pre-existing, weak, warm-core vortex is investigated with high-resolution cloud-resolving simulations using the Weather Research and Forecast Model (WRF). The simulation design and initial conditions are quite favourable for tropical cyclogenesis: the environment has a tropical sounding with no mean wind or wind shear, and the sea-surface temperature is held constant at 29 C. Nonetheless, it is found that sporadic convection must occur for 48 to 72 hours before genesis and rapid intensification begins. During this time, before intensification, the vortex is found to go through important structural changes in both its wind field and its thermodynamics. While the low-level wind field decays due to friction, the inner core slowly becomes humidified due to moist detrainment and precipitation from deep convective towers. As the relative humidity in the core exceeds values of 80 per cent over most of the depth of the troposphere, a mid-level vortex forms, contracts and intensifies. Once the mid-level vortex has reached a sufficient strength, and the inner core is nearly saturated, a smaller scale vortex forms very rapidly at the surface. This smaller vortex becomes the core of an intensifying tropical cyclone. This process is explored through careful study of the inner-core dynamics and thermodynamics, with close attention paid to the changes in the moist convection as the ijrmer core approaches saturation. While the frequency of deeper and stronger updraughts increases with time, the frequency of cool downdraughts remains essentially unchanged. In the hours before genesis, the intensification of the mid-level vortex leads to a large increase in the efficiency of the conversion of latent heat energy to the kinetic energy of the cyclonic wind field. The relative importances of the mid-level vortex and inner-core saturation are illustrated with additional simulations with different initial conditions and environmental soundings. Implications of these results for identifying and forecasting tropical cyclogenesis are discussed.
Park M.-S.,H.-S. Kim, C.-H. Ho, R. L. Elsberry, and M.-I. Lee, 2015: Tropical cyclone Mekkhala's (2008) formation over the South China Sea: Mesoscale, synoptic-scale, and large-scale contributions. Mon. Wea. Rev., 143, 88-110, https://doi.org/10.1175/MWR-D-14-00119.1
Rappin E. D.,D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 1954-1971, https://doi.org/10.1002/qj.706
Raymond D. D. J.,C. López-Carrillo, and L. L. Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 2005-2034, https://doi.org/10.1002/qj.49712455011
Rolph G.,A. Stein, and B. Stunder, 2017: Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210-228, https://doi.org/10.1016/j.envsoft.2017.06.025
Rotunno R.,K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542-561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2
Smith R. K.,M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Q. J. R. Meteorol. Soc., 138, 1721-1739, https://doi.org/10.1002/qj.1910
Stein A. F.,R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059-2077, https://doi.org/10.1175/BAMS-D-14-00110.1
Tao W.-K.,J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
Tao W.-K.,J. Simpson, C. H. Sui, B. Ferrier, S. Lang, J. Scala, M. D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673-690, https://doi.org/10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2
Wang L.,R. H. Huang, and R. G. Wu, 2013: Interdecadal variability in tropical cyclone frequency over the South China Sea and its association with the Indian Ocean sea surface temperature. Geophys. Res. Lett., 40, 768-771, https://doi.org/10.1002/grl.50171
Wang Y. P.,X. P. Cui, X. F. Li, W. L. Zhang, and Y. J. Huang, 2016a: Kinetic energy budget during the genesis period of tropical cyclone Durian (2001) in the South China Sea. Mon. Wea. Rev., 144, 2831-2854, https://doi.org/10.1175/MWR-D-15-0042.1
Wang Y. P.,X. P. Cui, and Y. J. Huang, 2016b: Characteristics of multiscale vortices in the simulated formation of Typhoon Durian (2001). Atmos. Sci. Lett., 17, 492-500. https://doi.org/10.1002/asl.683
Wang Z.,2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 2433-2451, https://doi.org/10.1175/JAS-D-11-0298.1
Wang Z.,M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of pre- hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 1730-1744, https://doi.org/10.1175/2010JAS3435.1
Wu L. G.,2007: Impact of Saharan air layer on hurricane peak intensity. Geophys. Res. Lett., 34, L09802, https://doi.org/10.1029/2007GL029564
Yi B. Q.,A. K. H. Lau, A. M. Liang, and Q. H. Zhang, 2008: Numerical study of the genesis and development of typhoon Wukong (2000) over South China Sea. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 773-780, https://doi.org/10.3321/j.issn:0479-8023.2008.05.017
Yoshida R.,Y. Miyamoto, H. Tomita, and Y. Kajikawa, 2017: The effect of water vapor on tropical cyclone genesis: A numerical experiment of a non-developing disturbance observed in PALAU2010. J. Meteor. Soc. Japan, 95, 35-47, http://doi.org/10.2151/jmsj.2017-001
Zawislak J.,E. J. Zipser, 2014: Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Mon. Wea. Rev., 142, 1250-1264, https://doi.org/10.1175/MWR-D-13-00253.1
Zhang. W., A. Wang, X. Cui, 2008: The role of the middle tropospheric mesoscale convective vortex in the genesis of Typhoon Durian (2001)——Simulation and verification. Chinese Journal of Atmospheric Sciences, 32, 1197-1209, https://doi.org/10.3878/j.issn.1006-9895.2008.05.17