Bellenger H.,J.-P. Duvel, 2009: An analysis of tropical ocean diurnal warm layers. J. Climate, 22, 3629-3646, https://doi.org/10.1175/2008JCLI2598.1
Bernie D. J.,S. J. Woolnough, and J. M. Slingo, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 1190-1202, https://doi.org/10.1175/JCLI3319.1
Bernie D. J.,E. Guilyardi, G. Madec, J. M. Slingo, and S. J. Woolnough, 2007: Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 1: A diurnally forced OGCM. Climate Dyn., 29, 575-590, https://doi.org/10.1007/s00382-007-0249-6
Castro S. L.,G. A. Wick, and J. J. H. Buck, 2014: Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations. Remote Sensing of Environment, 140, 789-799, https://doi.org/10.1016/j.rse.2013.08.042
Chen D.,L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 2156-2179, https://doi.org/10.1175/1520-0485(1994)024<2156:AHVMSA>2.0.CO;2
Clayson C. A.,A. D. Chen, 2002: Sensitivity of a coupled single-column model in the tropics to treatment of the interfacial parameterizations. J. Climate, 15, 1805-1831, https://doi.org/10.1175/1520-0442(2002)015<1805:SOACSC>2.0.CO;2
Clayson C. A.,D. Weitlich, 2005: Diurnal warming in the tropical Pacific and its interannual variability. Geophys. Res. Lett., 32, L21604, https://doi.org/10.1029/2005GL023786
Clayson C. A.,D. Weitlich, 2007: Variability of tropical diurnal sea surface temperature. J. Climate, 20, 334-352, https://doi.org/10.1175/JCLI3999.1
Clayson C. A.,A. S. Bogdanoff, 2013: The effect of diurnal sea surface temperature warming on climatological air-sea fluxes. J. Climate, 26, 2546-2556, https://doi.org/10.1175/JCLI-D-12-00062.1
Danabasoglu G.,W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 2347-2365, https://doi.org/10.1175/JCLI3739.1
Dickey T.,J. Marra, D. E. Sigurdson, R. A. Weller, C. S. Kinkade, S. E. Zedler, J. D. Wiggert, C. Langdon, 1998: Seasonal variability of bio-optical and physical properties in the Arabian Sea: October 1994-October 1995. Deep Sea Research Part II: Topical Studies in Oceanography, 45, 2001-2025, https://doi.org/10.1016/S0967-0645(98)00061-7
Eastwood S.,P. Le Borgne, S. Péré, and D. Poulter, 2011: Diurnal variability in sea surface temperature in the Arctic. Remote Sensing of Environment, 115, 2594-2602, https://doi.org/10.1016/j.rse.2011.05.015
Fairall C. W.,E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 1295-1308, https://doi.org/10.1029/95JC03190
Flament P.,J. Firing, M. Sawyer, and C. Trefois, 1994: Amplitude and horizontal structure of a large diurnal sea surface warming event during the coastal ocean dynamics experiment. J. Phys. Oceanogr., 24, 124- 139.10.1175/1520-0485(1994)024&lt;0124:AAHSOA&gt;2.0.CO;2http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(1994)024%3C0124:AAHSOA%3E2.0.CO;2
Gentemann C. L.,C. J. Donlon, A. Stuart-Menteth, and F. J. Wentz, 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30, 1140, https://doi.org/10.1029/2002GL016291
Hamilton G. D.,1986: National data buoy center programs. Bull. Amer. Meteor. Soc., 67, 411-415, https://doi.org/10.1175/1520-0477(1986)067<0411:NDBCP>2.0.CO;2
Hu Z. Z.,A. Kumar, 2015: Influence of availability of TAO data on NCEP ocean data assimilation systems along the equatorial Pacific. J. Geophys. Res., 120, 5534-5544, https://doi.org/10.1002/2015JC010913
Huang, W. Q, I. S. Robinson, N. C. Wells, 1999: Diurnal SST warming in the Bay of Biscay: Satellite measurements and model prediction. Acta Oceanologica Sinica, 18, 167- 176.
Kara A. B.,A. J. Wallcraft, and H. E. Hurlburt, 2005: A new solar radiation penetration scheme for use in ocean mixed layer studies: An application to the black sea using a fine-resolution hybrid coordinate ocean model (HYCOM). J. Phys. Oceanogr., 35, 13-32, https://doi.org/10.1175/JPO2677.1
Karagali I.,J. L. Høyer, 2014: Characterisation and quantification of regional diurnal SST cycles from SEVIRI. Ocean Science, 10, 745-758, https://doi.org/10.5194/os-10-745-2014
Kawai Y.,H. Kawamura, 2005: Spatial and temporal variations of model-derived diurnal amplitude of sea surface temperature in the western Pacific Ocean. J. Geophys. Res., 110, C08012, https://doi.org/10.1029/2004JC002652
Kawai Y.,A. Wada, 2007: Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: A review. Journal of Oceanography, 63, 721-744, https://doi.org/10.1007/s10872-007-0063-0
Kennedy J. J.,2014: A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys., 52, 1-32, https://doi.org/10.1002/2013RG000434
Kennedy J. J.,P. Brohan, and S. F. B. Tett, 2007: A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends. Geophys. Res. Lett.,34, L05712, https://doi.org/10.1029/2006GL028920
Kessler W. S.,M. C. Spillane, M. J. McPhaden, and D. E. Harrison, 1996: Scales of variability in the Equatorial Pacific inferred Form tropical atmosphere-ocean buoy array. . Climate, 9, 2999-3024, https://doi.org/10.1175/1520-0442(1996)009<2999:SOVITE>2.0.CO;2
Kumar A.,Z.-Z. Hu, 2012: Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575-588, https://doi.org/10.1007/s00382-011-1104-3
Li W.,R. C. Yu, H. L. Liu, and Y. Q. Yu, 2001: Impacts of diurnal cycle of SST on the intraseasonal variation of surface heat flux over the western Pacific Warm pool. Adv. Atmos. Sci., 18, 793- 806.
Ling T. J.,M. Xu, X.-Z. Liang, J. X. L. Wang, and Y. Noh, 2015: A multilevel ocean mixed layer model resolving the diurnal cycle: Development and validation. Journal of Advances in Modeling Earth Systems, 7, 1680-1692, https://doi.org/10.1002/2015MS000476
Loschnigg J.,P. J. Webster, 2000: A coupled ocean-atmosphere system of SST modulation for the Indian Ocean. J. Climate, 13, 3342-3360, https://doi.org/10.1175/1520-0442(2000)013<3342:ACOASO>2.0.CO;2
Marullo S.,R. Santoleri, V. Banzon, R. H. Evans, and M. Guarracino, 2010: A diurnal-cycle resolving sea surface temperature product for the tropical Atlantic. J. Geophys. Res., 115, C05011, https://doi.org/10.1029/2009JC005466
Masson S.,P. Terray, G. Madec, J.-J. Luo, T. Yamagata, and K. Takahashi, 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn., 39, 681-707, https://doi.org/10.1007/s00382-011-1247-2
Merchant C. J.,M. J. Filipiak, P. Le Borgne, H. Roquet, E. Autret, J.-F. Piollé, and S. Lavender, 2008: Diurnal warm-layer events in the western Mediterranean and European shelf seas. Geophys. Res. Lett., 35, L04601, https://doi.org/10.1029/2007GL033071
Mosedale T. J.,D. B. Stephenson, and M. Collins, 2005: Atlantic atmosphere-ocean interaction: A stochastic climate model-based diagnosis. J. Climate, 18, 1086-1095, https://doi.org/10.1175/JCLI-3315.1
Noh Y.,E. Lee, D. H. Kim, S. Y. Hong, M. J. Kim, and M. L. Ou, 2011: Prediction of the diurnal warming of sea surface temperature using an atmosphere-ocean mixed layer coupled model. J. Geophys. Res., 116, C11023, https://doi.org/10.1029/2011JC006970
Payne, R. E.,Coauthors, 2002: A Comparison of Buoy Meteorological Systems. Woods Hole Oceanographic Institution, 67 pp.10.1575/1912/6143e3c51c88fbb40aaab548649186add4http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F33547137_A_Comparison_of_buoy_meteorological_systemshttp://www.researchgate.net/publication/33547137_A_Comparison_of_buoy_meteorological_systemsDuring May and June 2000, an intercomparison was made of buoy meteorologicalsystems from the Woods Hole Oceanographic Institution (WHOI), the National Oceanographicand Atmospheric Administration (NOAA), Pacific Marine Environmental Laboratory (PMEL),and the Japanese Marine Science and Technology Center (JAMSTEC). Two WHOI systemsmounted on a 3 m discus buoy, two PMEL systems mounted on separate buoy tower tops andone JAMSTEC system mounted on a wooden platform were lined parallel to, and 25 m fromNantucket Sound in Massachusetts. All systems used R. M. Young propeller anemometers,Rotronic relative humidity and air temperature sensors and Eppley short-wave radiation sensors.The PMEL and WHOI systems used R. M.Young self-siphoning rain gauges, while theJAMSTEC system used a Scientific Technology ORG-115 optical rain gauge. The PMEL andWHOI systems included an Eppley PIR long-wave sensor, while the JAMSTEC had no longwavesensor. The WHOI system used an AIR DB-1A barometric pressure sensor. PMEL andJAMSTEC systems used Paroscientific Digiquartz sensors. The Geophysical Instruments andMeasurements Group (GIM) from Brookhaven National Laboratory (BNL) installed twoPortable Radiation Package (PRP) systems that include Eppley short-wave and long-wavesensors on a platform near the site.It was apparent from the data that for most of the sensors, the correlation between datasets was better than the absolute agreement between them. The conclusions made were that thesensors and associated electronics from the three different laboratories performed comparably.
Qin H. L.,H. Kawamura, and Y. Kawai, 2007: Detection of hot event in the equatorial Indo-Pacific warm pool using advanced satellite sea surface temperature, solar radiation, and wind speed. J. Geophys. Res., 112, C07015, https://doi.org/10.1029/2006JC003969
Reynolds R. W.,T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473-5496, https://doi.org/10.1175/2007JCLI1824.1
Saha, S., Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1058, https://doi.org/10.1175/2010BAMS3001.1
Saha, S., Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185-2208, https://doi.org/10.1175/JCLI-D-12-00823.1
Shenoi S. S. C.,N. Nasnodkar, G. Rajesh, K. Jossia Joseph, I. Suresh, and A. M. Almeida, 2009: On the diurnal ranges of Sea Surface Temperature (SST) in the north Indian Ocean. Journal of Earth System Science, 118, 483- 496.10.1007/s12040-009-0038-1335bfacf35bdf14c948261dd49aaa286http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs12040-009-0038-1http://link.springer.com/10.1007/s12040-009-0038-1This paper describes the variability in the diurnal range of SST in the north Indian Ocean using in situ measurements and tests the suitability of simple regression models in estimating the diurnal range. SST measurements obtained from 1556 drifting and 25 moored buoys were used to determine the diurnal range of SSTs. The magnitude of diurnal range of SST was highest in spring and lowest in summer monsoon. Except in spring, nearly 75–80% of the observations reported diurnal range below 0.5°C. The distributions of the magnitudes of diurnal warming across the three basins of north Indian Ocean (Arabian Sea, Bay of Bengal and Equatorial Indian Ocean) were similar except for the differences between the Arabian Sea and the other two basins during November–February (winter monsoon) and May. The magnitude of diurnal warming that depended on the location of temperature sensor below the water level varied with seasons. In spring, the magnitude of diurnal warming diminished drastically with the increase in the depth of temperature sensor. The diurnal range estimated using the drifting buoy data was higher than the diurnal range estimated using moored buoys fitted with temperature sensors at greater depths. A simple regression model based on the peak solar radiation and average wind speed was good enough to estimate the diurnal range of SST at 651.0 m in the north Indian Ocean during most of the seasons except under low wind-high solar radiation conditions that occur mostly during spring. The additional information on the rate of precipitation is found to be redundant for the estimation of the magnitude of diurnal warming at those depths.
Soloviev A.,R. Lukas, 1997: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep Sea Research Part I: Oceanographic Research Papers, 44, 1055-1076, https://doi.org/10.1016/S0967-0637(96)00124-0
Stopa J. E.,K. F. Cheung, 2014: Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Modelling, 75, 65-83, https://doi.org/10.1016/j.ocemod.2013.12.006
Stramma L.,P. Cornillon, R. A. Weller, J. F. Price, and M. G. Briscoe, 1986: Large diurnal sea surface temperature variability: Satellite and in situ measurements. J. Phys. Oceanogr., 16, 827-837, https://doi.org/10.1175/1520-0485(1986)016<0827:LDSSTV>2.0.CO;2
Stuart-Menteth A. C.,I. S. Robinson, and P. G. Challenor, 2003: A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res., 108, 3155, https://doi.org/10.1029/2002JC001534
Tanahashi S.,H. Kawamura, T. Takahashi, and H. Yusa, 2003: Diurnal variations of sea surface temperature over the wide-ranging ocean using VISSR on board GMS. J. Geophys. Res., 108, 3216, https://doi.org/10.1029/2002JC001313
Tu Q. G.,D. L. Pan, Z. Z. Hao, and Y. W. Yan, 2016: SST diurnal warming in the China seas and northwestern Pacific Ocean using MTSAT satellite observations. Acta Oceanologica Sinica, 35, 12-18, https://doi.org/10.1007/s13131-016-0968-9
Vitart F.,S. Woolnough, M. A. Balmaseda, and A. M. Tompkins, 2007: Monthly forecast of the madden-Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 2700-2715, https://doi.org/10.1175/MWR3415.1
Ward B.,2006: Near-surface ocean temperature. J. Geophys. Res., 111, C02004, https://doi.org/10.1029/2004JC002689
Weller R. A.,S. P. Anderson, 1996: Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA coupled ocean-atmosphere response experiment. J. Climate, 9, 1959-1990, https://doi.org/10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2
Woolnough S. J.,F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden-Julian Oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117-128, https://doi.org/10.1002/qj.4
Xue Y.,B. Y. Huang, Z.-Z. Hu, A. Kumar, C. H. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 2511-2539, https://doi.org/10.1007/s00382-010-0954-4
Zeng X. B.,A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030