Boodoo S.,D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. Journal of Applied Meteorology and Climatology, 49, 1779-1793, https://doi.org/10.1175/2010JAMC2421.1
Bringi V. N.,T. D. Keenan, and V. Chandrasekar, 2001: Correcting c-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906-1915, https://doi.org/10.1109/36.951081
Bringi V. N.,V. Chand rasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829-840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2
Cifelli R.,V. Chand rasekar, S. Lim, P. C. Kennedy, Y. Wang, and S. A. Rutledge, 2011: A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Oceanic Technol., 28, 352-364, https://doi.org/10.1175/2010JTECHA1488.1
Dee, D. P.,Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, https://doi.org/10.1002/qj.828
Fabry F.,I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838-851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2
Giangrand e, S. E.,A. V. Ryzhkov, 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 1156-1166, https://doi.org/10.1175/JTECH1766.1
Giangrand e, S. E., J. M. Krause, A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. Journal of Applied Meteorology and Climatology, 47, 1354-1364, https://doi.org/10.1175/2007JAMC1634.1
Haimberger L.,C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 8108-8131, https://doi.org/10.1175/JCLI-D-11-00668.1
Hall W.,M. A. Rico-Ramirez, and S. Krämer, 2015: Classification and correction of the bright band using an operational C-band polarimetric radar. J. Hydrol., 531, 248-258, https://doi.org/10.1016/j.jhydrol.2015.06.011
Hubbert J. C.,S. M. Ellis, M. Dixon, and G. Meymaris, 2010: Modeling, error analysis, and evaluation of dual-polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part I: Modeling and antenna errors. J. Atmos. Oceanic Technol., 27, 1583-1598, https://doi.org/10.1175/2010JTECHA1336.1
Jameson A. R.,1992: The effect of temperature on attenuation-correction schemes in rain using polarization propagation differential phase shift. J. Appl. Meteor., 31, 1106-1118, https://doi.org/10.1175/1520-0450(1992)031<1106:TEOTOA>2.0.CO;2
Kalogiros J.,M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013: Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain. Journal of Applied Meteorology and Climatology, 52, 1170-1186, https://doi.org/10.1175/JAMC-D-12-0140.1
Kumar V. S.,T. M. Naseef, 2015: Performance of ERA-Interim wave data in the nearshore waters around India. J. Atmos. Oceanic Technol., 32, 1257-1269, https://doi.org/10.1175/JTECH-D-14-00153.1
Liu X. Y.,H. P. Yang, J. T. Li, B. Li, K. Zhao, and Y. Y. Zheng, 2010: CINRAD radar quantitative precipitation estimation group system. Meteorological Monthly, 36, 90- 95. (in Chinese with English abstract).
Mooney P. A.,F. J. Mulligan, and R. Fealy, 2011: Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. International Journal of Climatology, 31, 545-557, https://doi.org/10.1002/joc.2098
Park S. G.,V. N. Bringi, V. Chand rasekar, M. Maki, and K. Iwanami, 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 1621-1632, https://doi.org/10.1175/JTECH1803.1
Park S. G.,M. Maki, K. Iwanami, V. N. Bringi, and V. Chandrasekar, 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 1633-1655, https://doi.org/10.1175/JTECH1804.1
Park H. S.,A. V. Ryzhkov, D. S. Zrnić, and K. E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730-748, https://doi.org/10.1175/2008WAF2222205.1
Qi Y. C.,J. Zhang, 2013: Correction of radar QPE errors associated with low and partially observed brightband layers. Journal of Hydrometeorology, 14, 1933-1943, https://doi.org/10.1175/JHM-D-13-040.1
Qi Y. C.,J. Zhang, and P. F. Zhang, 2013a: A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Quart. J. Roy. Meteor. Soc., 139, 2233-2240, https://doi.org/10.1002/qj.2095
Qi Y. C.,J. Zhang, P. F. Zhang, and Q. Cao, 2013b: VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res., 118, 3627-3633, https://doi.org/10.1002/jgrd.50364
Qi Y. C.,J. Zhang, Q. Cao, Y. Hong, and X. M. Hu, 2013c: Correction of radar QPE errors for nonuniform VPRs in mesoscale convective systems using TRMM observations. Journal of Hydrometeorology, 14, 1672-1682, https://doi.org/10.1175/JHM-D-12-0165.1
Smith C. J.,1986: The reduction of errors caused by bright bands in quantitative rainfall measurements made using radar. J. Atmos. Oceanic Technol., 3, 129-141, https://doi.org/10.1175/1520-0426(1986)003<0129:TROECB>2.0.CO;2
SÁnchez-Diezma R., I. Zawadzki, D. Sempere-Torres, 2000: Identification of the Bright Band through the Analysis of Volumetric Radar Data. J. Geophys. Res., 105, 2225-2236, https://doi.org/10.1029/1999JD900310
Shusse Y.,N. Takahashi, K. Nakagawa, S. Satoh, and T. Iguchi, 2011: Polarimetric radar observation of the melting layer in a convective rainfall system during the rainy season over the East China Sea. Journal of Applied Meteorology and Climatology, 50, 354-367, https://doi.org/10.1175/2010JAMC2469.1
Sun H. M.,P. Y. Zhang, Z. Jiang, and H. Y. Li, 2015: Automated correction of the bright band of weather radar reflectivity data in radar quantitative precipitation estimation. Transactions of Atmospheric Sciences, 38, 492-501, https://doi.org/10.13878/j.cnki.dqkxxb.20121207001
Wang H.,H. C. Lei, and J. F. Yang, 2017: Microphysical processes of a stratiform precipitation event over Eastern China: Analysis using micro rain radar data. Adv. Atmos. Sci., 34(12), 1472-1482, https://doi.org/10.1007/s00376-017-7005-6
Wang Y. T.,V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 2565-2578, https://doi.org/10.1175/2009JTECHA1358.1
White A. B.,P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. Journal of Hydrometeorology, 4, 264-282, https://doi.org/10.1175/1525-7541(2003)4<264:CORPOB>2.0.CO;2
Wu C.,L. P. Liu, M. Wei, B. Z. Xi, and M. H. Yu, 2018: Statistics-based optimization of the polarimetric radar Hydrometeor Classification Algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35(3), 296-316, https://doi.org/10.1007/s00376-017-6241-0
Xiao Y. J.,L. P. Liu, Z. H. Li, and H. Y. Wang, 2010: Automatic recognition and removal of the bright band using radar reflectivity data. Plateau Meteorology, 29, 197- 205. (in Chinese with English abstract).10.3788/gzxb20103906.099817aa3e1c8ba52f8626a6808e0530df8ahttp%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTotal-GYQX201001023.htmhttp://en.cnki.com.cn/Article_en/CJFDTotal-GYQX201001023.htmTo alleviate the effect of contaminated reflectivity measurements by brightband on surface rainfall estimation,an automated algorithm that operates on volume scan reflectivity data from China New Generation Weather Radar (CINRAD) to identify the height,depth and region of the bright band and restrain the bright band reflectivities for every volume scan has been developed. First of all,the apparent Vertical Profile of radar Reflectivity (VPR) is reconstructed by averaging the layered reflectivities at near range. Then based on the prominent curvature of VPR of brightband,the brightband is identified and removed. A comparison of radar-deduced brightband heights with melting levels derived from temperature profiles measured with rawinsondes launched from nearby radiosonde shows that the brightband height is,on average,0.5 km lower than the melting level. The thicknesses of brightband are mostly 1 km to 1.25 km. The brightband areas can be recognized and removed effectively. After bright removal,the high reflectivity areas of compose reflectivity and vertical cross-section of reflectivity are restrained,and the marked curvature of mean VPR of brightband disappears. The volume scan reflectivity data through bright removal will be used for radar rainfall estimation.
Yang Y.,X. Chen, and Y. C. Qi, 2013: Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J. Geophys. Res., 118, 1896-1905, https://doi.org/10.1002/jgrd.50214
Zhang J.,Y. C. Qi, 2010: A real-time algorithm for the correction of brightband effects in radar-derived QPE. Journal of Hydrometeorology, 11, 1157-1171, https://doi.org/10.1175/2010JHM1201.1
Zhang J.,C. Langston, and K. Howard, 2008: Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Oceanic Technol., 25, 1859-1872, https://doi.org/10.1175/2008JTECHA1039.1
Zhang J.,Y. C. Qi, D. Kingsmill, and K. Howard, 2012: Radar-based quantitative precipitation estimation for the cool season in complex terrain: Case studies from the NOAA hydrometeorology testbed. Journal of Hydrometeorology, 13, 1836-1854, https://doi.org/10.1175/JHM-D-11-0145.1
Zhuang W.,L. P. Liu, and Z. Q. Hu, 2013: Application of bright band identification and correction in radar-based QPE over Tibetan Plateau. Meteorological Monthly, 39, 1004-1013, https://doi.org/10.7519/j.issn.1000-0526.2013.08.007