Blyth E.,J. Gash, A. Lloyd, M. Pryor, G. P. Weedon, and J. Shuttleworth, 2010: Evaluating the JULES land surface model energy fluxes using FLUXNET data. Journal of Hydrometeorology, 11(2), 509-519, https://doi.org/10.1175/2009JHM1183.1
Cai X. T.,Z.-L. Yang, Y. L. Xia, M. Y. Huang, H. L. Wei, L. R. Leung, and M. B. Ek, 2014a: Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res., 119(24), 13 751-13 770, https://doi.org/10.1002/2014JD022113
Cai X. T.,Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014b: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res., 119(1), 23-38, https://doi.org/10.1002/2013JD020792
Chen F.,J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129(4), 569-585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen F., Coauthors, 2014: Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: a model intercomparison study. J. Geophys. Res., 119(24), 13 795-13 819, https://doi.org/10.1002/2014JD022167
Chen H. S.,R. E. Dickinson, Y. J. Dai, and L. M. Zhou, 2011: Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes. Climate Dyn., 36(5), 1037-1054, https://doi.org/10.1007/s00382-010-0741-2
Chen Y. Y.,K. Yang, D. G. Zhou, J. Qin, and X. F. Guo, 2010: Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11(4), 995-1006, https://doi.org/10.1175/2010JHM1185.1
Chen Y. Y.,K. Yang, W. J. Tang, J. Qin, and L. Zhao, 2012: Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Science China Earth Sciences, 55(6), 1001-1011, https://doi.org/10.1007/s11430-012-4433-0
Dan L.,J. J. Ji, 2007: The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model. Tellus B: Chemical and Physical Meteorology, 59(3), 425-438, https://doi.org/10.1111/j.1600-0889.2007.00274.x
Dan L.,F. Q. Cao, and R. Gao, 2015: The improvement of a regional climate model by coupling a land surface model with eco-physiological processes: a case study in 1998. Climatic Change, 129(3-4), 457-470, https://doi.org/10.1007/s10584-013-0997-8
De Gonçalves, L. G. G.,Coauthors, 2013: Overview of the large-scale biosphere-atmosphere experiment in Amazonia data model intercomparison project (LBA-DMIP). Agricultural and Forest Meteorology, 182-183, 111-127, https://doi.org/10.1016/j.agrformet.2013.04.030
Dickinson R. E.,1995: Land-atmosphere interaction. Rev. Geophys., 33(S2), 917-922, https://doi.org/10.1029/95RG00284
Ek M. B.,K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale eta model. J. Geophys. Res., 108(D22), 8851, https://doi.org/10.1029/2002jd003296
Gao Y. H.,K. Li, F. Chen, Y. S. Jiang, and C. G. Lu, 2015: Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res., 120(18), 9258-9278, https://doi.org/10.1002/2015JD023404
Gayler S., Coauthors, 2014: Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites. Water Resour. Res., 50(2), 1337-1356, https://doi.org/10.1002/2013WR014634
Gulden L. E.,E. Roseroe, Z. L. Yang, T. Wagener, and G. Y. Niu, 2008: Model performance, model robustness, and model fitness scores: a new method for identifying good land-surface models. Geophys. Res. Lett., 35(11), L11404, https://doi.org/10.1029/2008gl033721
Jia Z. Z.,S. M. Liu, Z. W. Xu, Y. J. Chen, and M. J. Zhu, 2012: Validation of remotely sensed evapotranspiration over the Hai River Basin, China. J. Geophys. Res., 117(D13), D13113, https://doi.org/10.1029/2011JD017037
Jin J.,X. Gao, Z.-L. Yang, R. C. Bales, S. Sorooshian, R. E. Dickinson, S. F. Sun, and G. X. Wu, 1999: Comparative analyses of physically based snowmelt models for climate simulations. J. Climate, 12(8), 2643-2657, https://doi.org/10.1175/1520-0442(1999)012<2643:CAOPBS>2.0.CO;2
Liu S. M.,Z. W. Xu, Z. L. Zhu, Z. Z. Jia, and M. J. Zhu, 2013: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol., 487, 24-38, https://doi.org/10.1016/j.jhydrol.2013.02.025
Niu G.-Y., Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116(D12), D12109, https://doi.org/10.1029/2010JD015139
Pan Y.,C. Zhang, H. L. Gong, P. J.-F. Yeh, Y. J. Shen, Y. Guo, Z. Y. Huang, and X. J. Li, 2017: Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett., 44(1), 190-199, https://doi.org/10.1002/2016GL071287
Peng J.,L. Dan, 2015: Impacts of CO2 concentration and climate change on the terrestrial carbon flux using six global climate-carbon coupled models. Ecological Modelling, 304, 69-83, https://doi.org/10.1016/j.ecolmodel.2015.02.016
Peters-Lidard C. D.,E. Blackburn, X. Liang, and E. F. Wood, 1998: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci., 55(7), 1209-1224, https://doi.org/10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2
Pilotto I. L., D. A. Rodríguez, J. Tomasella, G. Sampaio, and S. C. Chou, 2015: Comparisons of the Noah-MP land surface model simulations with measurements of forest and crop sites in Amazonia. Meteor. Atmos. Phys., 127(6), 711-723, https://doi.org/10.1007/s00703-015-0399-8
Pitman A. J.,2003: The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23(5), 479-510, https://doi.org/10.1002/joc.893
Rosero E.,Z.-L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and G.-Y. Niu, 2010: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J. Geophys. Res., 115(D3), D03106, https://doi.org/10.1029/2009JD012035
Skamarock, W. C.,Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR, 125 pp.
Twine, T. E.,Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103(3), 279-300, https://doi.org/10.1016/S0168-1923(00)00123-4
Yang K.,J. M. Wang, 2008: A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Science in China Series D: Earth Sciences, 51(5), 721-729, https://doi.org/10.1007/s11430-008-0036-1
Yang K.,T. Koike, B. S. Ye, and L. Bastidas, 2005: Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J. Geophys. Res., 110(D8), D08101, https://doi.org/10.1029/2004JD005500
Yang Z.-L., Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116(D12), D12110, https://doi.org/10.1029/2010JD015140
Zhang G.,F. Chen, and Y. J. Gan, 2016: Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res., 121(16), 9576-9596, https://doi.org/10.1002/2016JD024928
Zheng D. H.,R. Van Der Velde, Z. B. Su, J. Wen, M. J. Booij, A. Y. Hoekstra, and X. Wang, 2015: Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP. Water Resour. Res., 51(7), 5735-5755, https://doi.org/10.1002/2015wr017115