Aggarwal C. C.,2016: Outlier Analysis. 2nd ed., Springer, Cham, 263 pp.
Araki S.,H. Shimadera, K. Yamamoto, and A. Kondo, 2017: Effect of spatial outliers on the regression modelling of air pollutant concentrations: A case study in Japan. Atmos. Environ., 153, 83-93, https://doi.org/10.1016/j.atmosenv.2016.12.057
Bickel P. J.,E. Levina, 2008: Regularized estimation of large covariance matrices. The Annals of Statistics, 36, 199-227, https://doi.org/10.1214/009053607000000758
Bobbia M.,M. Misiti, Y. Misiti, J.-M. Poggi, and B. Portier, 2015: Spatial outlier detection in the PM10 monitoring network of Normandy (France). Atmospheric Pollution Research, 6, 476-483, https://doi.org/10.5094/APR.2015.053
Čampulová, M., P. Veselík, J. Michàlek, 2017: Control chart and Six sigma based algorithms for identification of outliers in experimental data, with an application to particulate matter PM10. Atmospheric Pollution Research, 8, 700-708, https://doi.org/10.1016/j.apr.2017.01.004
Dorigo, W. A.,Coauthors, 2013: Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12, https://doi.org/10.2136/vzj2012.0097
Dunn R. J. H.,K. M. Willett, P. W. Thorne, E. V. Woolley, I. Durre, A. Dai, D. E. Parker, and R. S. Vose, 2012: HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973-2011. Climate of the Past, 8, 1649-1679, https://doi.org/10.5194/cp-8-1649-2012
Durre I.,M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. Journal of Applied Meteorology and Climatology, 49, 1615-1633, https://doi.org/10.1175/2010JAMC2375.1
Feng S.,Q. Hu, and W. H. Qian, 2004: Quality control of daily meteorological data in China, 1951-2000: A new dataset. International Journal of Climatology, 24, 853-870, https://doi.org/10.1002/joc.1047
Fiebrich C. A.,C. R. Morgan, A. G. McCombs, P. K. Hall, and R. A. McPherson, 2010: Quality assurance procedures for mesoscale meteorological data. J. Atmos. Oceanic Technol., 27, 1565-1582, https://doi.org/10.1175/2010JTECHA1433.1
Gaspari G.,S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757, https://doi.org/10.1002/qj.49712555417
Golz C.,T. Einfalt, M. Gabella, and U. Germann, 2005: Quality control algorithms for rainfall measurements. Atmospheric Research, 77, 247-255, https://doi.org/10.1016/j.atmosres.2004.10.027
Gu, J. B.,Coauthors, 2017: Ground-level NO2 concentrations over China inferred from the satellite OMI and CMAQ model simulations. Remote Sensing,9, 519, https://doi.org/10.3390/rs9060519
Guan Q. Y.,2016: Judgment and handling of abnormal data during ambient air automatic monitoring data audit. Environmental Monitoring and Forewarning, 8, 59-63, https://doi.org/10.3969/j.issn.1674-6732.2016.05.015
Ingleby B.,M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles——Historical and real-time data. J. Mar. Syst., 65, 158-175, https://doi.org/10.1016/j.jmarsys.2005.11.019
Jiménez, P. A., J. F. Gonzàlez-Rouco, J. Navarro, J. P. Montàvez, E. Garcia-Bustamante, 2010: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 1101-1122, https://doi.org/10.1175/2010JTECHA1404.1
Karam L. J.,J. H. McClellan, 1995: Complex Chebyshev approximation for FIR filter design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42, 207-216, https://doi.org/10.1109/82.372870
Kracht O.,M. Gerboles, and H. I. Reuter, 2014: First evaluation of a novel screening tool for outlier detection in large scale ambient air quality datasets. International Journal of Environment and Pollution, 55, 120-128, https://doi.org/10.1504/IJEP.2014.065912
Lanzante J. R.,1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. International Journal of Climatology, 16, 1197-1226, https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L
Legates D. R.,G. J. McCabe, 1999: Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233-241, https://doi.org/10.1029/1998WR900018
Leiva V.,M. Barros, G. A. Paula, and A. Sanhueza, 2008: Generalized Birnbaum-Saunders distributions applied to air pollutant concentration. Environmetrics, 19, 235-249, https://doi.org/10.1002/env.861
Li, H. M.,Coauthors, 2017: Chemical partitioning of fine particle-bound metals on haze-fog and non-haze-fog days in Nanjing, China and its contribution to human health risks. Atmospheric Research, 183, 142-150, https://doi.org/10.1016/j.atmosres.2016.07.016
Liao J.,B. Wang, and Q. X. Li, 2014: A new method for quality control of Chinese rawinsonde wind observations. Adv Atmos Sci, 31, 1293-1304, https://doi.org/10.1007/s00376-014-4030-6
Luo M.,2016: Quality control research of air pollutant hourly monitoring data. M.S thesis , Dept. of School of Geographic Sciences, East China Normal University (in Chinese).
Niu G.,2017: Features and cause analysis of abnormal data of particulate matter in ambient air monitoring. Anhui Chemical Industry, 43, 103-105, https://doi.org/10.3969/j.issn.1008-553X.2017.02.033
Pan B.F.,H. H. Zheng, L. N. Li, and W. Wang, 2014: The characteristic and reason about the reversal between PM2.5 and PM10 in ambient air quality automatic monitoring. Environmental Monitoring in China, 30, 90- 95 (in Chinese).
Sciuto G.,B. Bonaccorso, A. Cancelliere, and G. Rossi, 2013: Probabilistic quality control of daily temperature data. International Journal of Climatology, 33, 1211-1227, https://doi.org/10.1002/joc.3506
Shan W. P.,Y. Q. Yin, H. X. Lu, and S. X. Liang, 2009: A meteorological analysis of ozone episodes using HYSPLIT model and surface data. Atmospheric Research, 93, 767-776, https://doi.org/10.1016/j.atmosres.2009.03.007
Steinacker R.,D. Mayer, and A. Steiner, 2011: Data quality control based on self-consistency. Mon. Wea. Rev., 139, 3974-3991, https://doi.org/10.1175/MWR-D-10-05024.1
Tang X.,J. Zhu, Z. F. Wang, A. Gbaguidi, C. Y. Lin, J. Y. Xin, T. Song, and B. Hu, 2016: Limitations of ozone data assimilation with adjustment of NOX emissions: Mixed effects on NO2 forecasts over Beijing and surrounding areas. Atmospheric Chemistry and Physics, 16, 6395-6405, https://doi.org/10.5194/acp-16-6395-2016
Wang L. T.,Y. Zhang, K. Wang, B. Zheng, Q. Zhang, and W. Wei, 2016: Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study,comparative evaluation, and policy implications. Atmos. Environ., 124, 337-350, https://doi.org/10.1016/j.atmosenv.2014.12.052
Wu L.,M. Bocquet, and M. Chevallier, 2010: Optimal reduction of the ozone monitoring network over France. Atmos. Environ., 44, 3071-3083, https://doi.org/10.1016/j.atmosenv.2010.04.012
You J. S.,K. G. Hubbard, and S. Goddard, 2008: Comparison of methods for spatially estimating station temperatures in a quality control system. International Journal of Climatology, 28, 777-787, https://doi.org/10.1002/joc.1571
Zheng, B., Coauthors, 2015: Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry and Physics, 15, 2031-2049, https://doi.org/10.5194/acp-15-2031-2015