Adler R. F.,D. D. Fenn, 1979: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502-517, https://doi.org/10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2.
Adler R. F.,M. J. Markusa, D. D. Fennc, G. Szejwacha, and W. E. Shenka, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579-593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.
Bedka K. M.,J. R. Mecikalski, 2005: Application of satellite- derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 1761-1772, https://doi.org/10.1175/JAM2264.1.
Chen G.,G. P. Li, 2014: Dynamic and numerical study of waves in the Tibetan Plateau Vortex. Adv. Atmos. Sci., 31(2), 131-138, https://doi.org/10.1007/s00376-013-1035-5.
Chen Z. M.,1988: The dynamic analyses of the effect of large-scale environment flow fields and cumulus on the development of sub-synoptic scale southwest vortex. Plateau Meteorology, 7( 2), 27- 38. (in Chinese)aff0d1eeba3bc9d2c9dd2f79b5cad7d1http%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-GYQX198801003.htmhttp://en.cnki.com.cn/Article_en/CJFDTOTAL-GYQX198801003.htmIn this paper, sub-synoptic scale disturbance has been connected with cumulus by a simplest cumulus parameterization scheme. Equations which describe the effect of large-scale environment flow fields and cumulus on sub-synoptic scale disturbance have been solved in a simple two-layer model.Different factors which have influence on the Southwest Vortex have been analyzed.Finally,we discussed the simple structure of the developing Southwest Vortex in the model.
Chen Z. M.,M. L. Xu, W. B. Min, and Q. Miao, 2003: Relationship between abnormal activites of Southwest Vortex and heavy rain the upper reach of Yangtze River during Summer of 1998. Plateau Meteorology, 22(3), 162-167, https://doi.org/10.3321/j.issn:1000-0534.2003.02.010. (in Chinese)
Chen Z. M.,W. B. Min, Q Miao, and G. B. He, 2004: A case study on coupling interaction between plateau and southwest vortexes. Plateau Meteorology, 23, 75-80, https://doi.org/10.3321/j.issn:1000-0534.2004.01.011. (in Chinese)
Cheng X. L.,Y. Q. Li, and L. Xu, 2016: An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation. Meteor. Atmos. Phys., 128, 373-399, https://doi.org/10.1007/s00703-015-0420-2.
DeMaria M.,J. Kaplan, 1994: A Statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. Wea. Forecasting, 9, 209-220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.
DeMaria M.,M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Wea. Forecasting, 20, 531-543, https://doi.org/10.1175/WAF862.1.
Feidas H.,2003: A software tool for monitoring the features of convective cloud systems with the use of Meteosat images. Environmental Modeling & Software, 18, 1-12, https://doi.org/10.1016/S1364-8152(02)00041-5.
Fitzpatrick P. J.,1997: Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Wea. Forecasting, 12, 826-846, https://doi.org/10.1175/1520-0434(1997)012<0826:UAFTCI>2.0.CO;2.
Fu S.-M.,W.-L. Li, J.-H. Sun, J.-P. Zhang, and Y.-C. Zhang, 2015: Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin. Atmospheric Science Letters, 16, 127-134, https://doi.org/10.1002/asl2.533.
Fujita T. T.,1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355-368, https://doi.org/10.2151/jmsj1965.60.1_355.
Heymsfield G. M.,G. Szejwach, S. Schotz, and R. H. Blackmer Jr.,1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. II: Proposed explanation of "V" pattern and internal warm region in infrared observations. J. Atmos. Sci., 40, 1756-1767, https://doi.org/10.1175/1520-0469(1983)040<1756:ULSOOT>2.0.CO;2.
Hoskins B. J.,M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946, https://doi.org/10.1002/qj.49711147002.
Huang C. H.,G. P. Li, 2009: A case study of plateau vortex moving east ward with heavy rainfalls based on helicity and non-geostrophic wet Q-vector. Plateau Meteorology, 28( 3), 319- 326. (in Chinese)10.1016/S1003-6326(09)60084-4b98006d2453ee14ccba6c6508440dfe4http%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTotal-GYQX200902010.htmhttp://en.cnki.com.cn/Article_en/CJFDTotal-GYQX200902010.htmUsing NCEP global 1 final-analysis data and the routine observation data,with the theories of helicity and non-geostrophic wet Q-vector,a case of Plateau vortex moving east which caused heavy precipitation was analyzed by both synoptic analysis and dynamic methods.The results show that 500 hPa horizontal distribution of z-helicity can give good direction to the movement of vortex center and distribution of rainfall,the heavy precipitation is located in the great grads of positive helicity.z-helicity can reflect the dynamic character of weather when the rainstorm occurred,and divergence of negative vorticity on higher level matched convergence of positive vorticity on lower leve1 is a dynamic mechanism to trigger heavy precipitation.Relative spiral of more comprehensively reflect the rainfall districts and rainfall distribution center,and the next 6 h after the precipitation to the districts and have a better prediction of heavy precipitation occurred in a relatively central spiral of plus and minus centres connect the maximum gradient value of the positive side.Low level convergence of non-geostrophic wet Q-vector as a powerful tool to diagnose precipitation qualitatively has good relation to rain falls,convergence center are correlation with precipitation intensity;cross-section of wet Q-vector divergence provided good reference information for the distribution and movement of precipitation.
Huang C. H.,G. P. Li, J. L. Niu, F. H. Zhao, H. Zhang, and Y. He, 2015: A 30-year climatology of the moving-out Tibetan Plateau vortex in summer and its influence on the rainfall in China. Journal of Tropical Meteorology, 31, 827-838, https://doi.org/10.16032/j.issn.1004-4965.2015.06.011. (in Chinese)
Hunt W. H.,D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO Lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 1214-1228, https://doi.org/10.1175/2009JTECHA1223.1.
Jiang L. J.,G. P. Li, 2015: Analysis of heavy precipitation caused by the vortices in the lee of the Tibetan Plateau from TRMM (the Tropical Rainfall Measuring Mission) observations. Proc. Volume 9640, Remote Sensing of Clouds and the Atmosphere XX, Toulouse, France, SPIE, https://doi.org/10.1117/12.2191821.
Jiang L. J.,G. P. Li, X. T. Wang, 2015: Comparative study based on TRMM data of the heavy rainfall caused by the Tibetan Plateau vortex and the southwest vortex. Chinese J. Atmos. Sci., 39(3), 249-259, https://doi.org/10.3878/j.issn.1006-9895.1407.13260. (in Chinese)
Koch, S. E.,Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 3885-3908, https://doi.org/10.1175/JAS3574.1.
Kurino T.,1997: A satellite infrared technique for estimating "deep/shallow" precipitation. Advances in Space Research, 19, 511-514, https://doi.org/10.1016/S0273-1177(97)00063-X.
Li L.,R. H. Zhang, and M. Wen, 2014: Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices. Meteor. Atmos. Phys., 125, 135-144, https://doi.org/10.1007/s00703-014-0325-5.
Li L.,R. H. Zhang, and M. Wen, 2017: Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices. Climate Dyn., 50, 4507-4518, https://doi.org/10.1007/s00382-017-3887-3.
Li J. P.,S. G. Wang, and G. W. Sun, 2012: Review and prospects of research on low vortex on the Qinghai-Tibetan plateau. Journal of Lanzhou University (Natural Sciences), 48(4), 53-60, 71, https://doi.org/10.3969/j.issn.0455-2059.2012.04.009. (in Chinese)
Lu J. H.,1986: The Introduction of Southwest Vortex. China Meteorological Press, 276 pp. (in Chinese)
Luo S.,1992: The Researches of Several Synoptic Systems of Tibetan Plateau and Nearby Areas. China Meteorological Press, 205 pp. (in Chinese)2631c15a333e9b286c92f739afd3cd4dhttp://xueshurefer.baidu.com/nopagerefer?id=a4f1d235b5967e97a7dcbe242d0fff9chttp://xueshurefer.baidu.com/nopagerefer?id=a4f1d235b5967e97a7dcbe242d0fff9c.
Lutz H.-J.,T. Inoue, and J. Schmetz, 2003: Comparison of a split-window and a multi-spectral cloud classification for MODIS observations. J. Meteor. Soc. Japan, 81, 623-631, https://doi.org/10.2151/jmsj.81.623.
Machado L. A. T.,W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 1630-1654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.
Maddox R.,1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475-1493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.
McCann D. W.,1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887-894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.
Mecikalski, J. R.,Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash. Bull. Amer. Meteor. Soc., 88, 1589-1607, https://doi.org/10.1175/BAMS-88-10-1589.
Mecikalski J. R.,K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136, 4899-4914. https://doi.org/10.1175/2008MWR2352.1.
Mecikalski J. R.,D. Rosenfeld, and A. Manzato, 2016: Evaluation of geostationary satellite observations and the development of a 1-2 h prediction model for future storm intensity. J. Geophys. Res., 121, 6374-6392, https://doi.org/10.1002/2016JD024768.
Mills P. B.,E. G. Astling, 1977: Detection of tropopause penetrations by intense convection with GOES enhanced infrared imagery. Proc. 10th Conf. on Severe Local Storms, Omaha, Amer. Meteor. Soc., 61- 64.
Purdom J. F. W.,1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 1474-1483, https://doi.org/10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.
Rosenfeld D.,1997: Comments on "A new look at the Israeli cloud seeding experiments". J. Appl. Meteor., 36, 260-271, https://doi.org/10.1175/1520-0450(1997)036<0260:COANLA>2.0.CO;2.
Rosenfeld D.,I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457-2476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.
Schmetz J.,S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Advances in Space Research, 19, 433-441, https://doi.org/10.1016/S0273-1177(97)00051-3.
Schmidt E. O.,R. F. Arduini, B. A. Wielicki, R. S. Stone, and S.-C. Tsay, 1995: Considerations for modeling thin cirrus effects via brightness temperature differences. J. Appl. Meteor., 34, 447-459, https://doi.org/10.1175/1520-0450-34.2.447.
Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvát, J. Št'ástka, P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229-248, https://doi.org/10.1016/j.atmosres.2012.06.020.
Setvák, M., Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 80-96, https://doi.org/10.1016/j.atmosres.2010.03.009.
Shou S. W.,S. S. Li, and X. P. Yao, 2003: Mesoscale Meteorology. China Meteorological Press, 370 pp. (in Chinese)
Siewert C. W.,M. Koenig, and J. R. Mecikalski, 2010: Application of Meteosat second generation data towards improving the nowcasting of convective initiation. Meteor. Appl., 17, 442-451, https://doi.org/10.1002/met.176.
Sun J. H.,J. Li, X. Y. Shen, and L. Kang, 2015: Mesoscale system study of extreme rainfall over Sichuan Basin in July 2013. Meteorological Monthly, 41(5), 533-543, https://doi.org/10.7519/j.issn.1000-0526.2015.05.002. (in Chinese)
Tao S.,1980: Rainstorm in China. Science Press, 225 pp. (in Chinese)
Wang P. K.,2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmospheric Research, 83, 254-262, https://doi.org/10.1016/j.atmosres.2005.08.010.
Wang P. K.,M. Setvák W. Lyons, W. Schmid, and H. M. Lin, 2009: Further evidences of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94, 400-408, https://doi.org/10.1016/j.atmosres.2009.06.018.
Wang X. F.,Y. S. Liao, A. R. Min, and C. G. Cui, 2007: Characteristics of southwest vortex of influencing "05.06.25" Yangtze River rainstorm. Plateau Meteorology, 26(2), 197-205, https://doi.org/10.3321/j.issn:1000-0534.2007.01.023.(in Chinese)
Xiang S. Y.,Y. Q. Li, D. Li, and S. Yang, 2013: An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data. Meteor. Atmos. Phys., 122, 33-45, https://doi.org/10.1007/s00703-013-0269-1.
Xu J. M.,Q. Guo, Q. F. Lu, F. Lu, and X. H. Zhang, 2014: Innovations in the data processing algorithm for Chinese FY meteorological satellites. Journal of Meteorological Research, 28(5), 948-946, https://doi.org/10.1007/s13351-014-4034-2.
Xu Y. M.,H. N. Liu, and G. Y. Xu, 2000: Introduction of Atmospheric Sciences. Nanjing University Press, 219 pp. (in Chinese)
Ye D. Z.,Y. X. Gao, 1979: Meteorology of the Tibetan Plateau. Science Press, 316 pp. (in Chinese)60f328f240eca865517ba26e79c9eceehttp://xueshurefer.baidu.com/nopagerefer?id=812f2ce40ade28f72c765a5d6c004cd3http://xueshurefer.baidu.com/nopagerefer?id=812f2ce40ade28f72c765a5d6c004cd3.
Yu S. H.,2002: Water vapor imagery of vortex moving process over Qinghai-Xizang Plateau. Plateau Meteorology, 21, 199-204, https://doi.org/10.3321/j.issn:1000-0534.2002.02.013. (in Chinese with English abstract)
Yu S. H.,G. B. He, 2003: Analysis on application of statellite vapour image to weather prediction over Plateau. Plateau Meteorology, 22, 75-82, https://doi.org/10.3321/j.issn:1000-0534.2003.z1.010. (in Chinese)
Yu S. H.,W. L. Gao, 2017: Analysis of environmental background and potential vorticity of different accompanied moving cases of Tibetan Plateau vortex and Southwest China vortex. Chinese Journal of Atmospheric Sciences, 41(4), 831-856, https://doi.org/10.3878/j.issn.1006-9895.1612.16213. (in Chinese)
Yu S. H.,W. L. Gao, J. Peng, and Y. H. Xiao, 2014: Observational facts of sustained departure Plateau Vortexes. J. Meteor. Res., 28(3), 296-307, https://doi.org/10.1007/s13351-014-3023-9.
Zhang F. Q.,2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440-457, https://doi.org/10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.
Zhang F. Q.,S. E. Koch, 2000: Numerical simulations of a gravity wave event over CCOPE. Part II: Waves generated by an orographic density current. Mon. Wea. Rev., 128, 2777-2796, https://doi.org/10.1175/1520-0493(2000)128<2777:NSOAGW>2.0.CO;2.
Zhao Y. C.,Y. H. Wang, 2010: A case study on Plateau vortex inducing southwest vortex and producing extremely heavy rain. Plateau Meteorology, 29( 4), 819- 831. (in Chinese)10.3788/gzxb20103906.09984870ca8eab6b2f9584b79da511c62b18http%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTotal-GYQX201004001.htmhttp://en.cnki.com.cn/Article_en/CJFDTotal-GYQX201004001.htmUsing the multiple detections,observations-and reanalysis data,it is analyzed a weather process where a Plateau Vortex moved eastward,induced a southwest vortex and produced extremely heavy rainstorm on 20锝21 July 2008 by diagnostic analysis,numerical simulation and sensitivity experiment.Then it is investigated the mesoscale environmental-features during the extremely heavy rainstorm,the role of particular topography and diabatic processes in the development,eastward movement,south-west vortex inducing and extremely heavy rainstorm producing of the Plateau Vortex.The results show that the Plateau Vortex moved downward along the northeast side of Tibetan Plateau and induced a south-west vortex in Sichuan basin after its formation.The extremely heavy rainstorm in the middle of Sichuan Province is resulted from severe mesoscale convective systems (MCSs) triggered in the formation of southwest vortex.The easterly winds induced by Plateau Vortex are forced to release convective available potential energy,trigger MCSs and produce intensive heavy rainstorm under the dynamic lifting of the topography in the east of Chuanxi Plateau.The condensation latent heating of precipitation drives the fast development of the southwest vortex.Only formed is a shallow southwest vortex under the dynamic role of the topography.The southwest vortex is sufficiently developed only when the rainfall condensation latent heating is feedback.The development of the Plateau Vortex,which determines the south-west vortex growth to a large degree,is mainly influenced by the surface heat flux.The high mountains around Sichuan basin exert a different influence on the position of southwest vortex respectively,while the microand mesoscale peaks embedded on the high mountains do not greatly affect the position of southwest vortex and heavy rain band,but the rainstorm dropping zone to a certain degree.
Zhou K.,H. W. Liu, L. Zhao, Y. X. Zhu, Y. H. Lin, F. Y. Zhang, and N. Fu, 2017: Binary mesovortex structure associated with southwest vortex. Atmospheric Science Letters, 18, 246-252, https://doi.org/10.1002/asl.749.
Zhu F.,S. Tao, and L. Chen, 2000: The moist pool over the plateau. The Second Session of International Workshop on TIPEX (IWTE-I), China Meteorological Press, 106- 112. (in Chinese)